16/06/01 10:16:34.86 vrr56IPC.net
このところ四次方程式について考えていたが、
ようやくふんぎりが付いたので、いよいよ第八節に移ろう。
あとは第八節さえ理解すれば、ガロア原論文は大体分ったことになる。
ガロアは第八節で、素数次方程式が解ける必要十分条件として、
任意の二根が分れば、他の根はすべてその二根の有理式として表されること、
と書いている。
これに関してネットで解説を探しても、
三森明夫氏のPDFくらいしか見つからなかった。
URLリンク(www.jmedj.co.jp)
ここで三森氏はいやに小難しい議論をしているが、
ガロアが果たして三森氏が書いているようなことを考えていたかは疑問である。
私は三森氏とはまったく別のやり方で、
任意の二根が分れば他の根はすべて分ることを確認した。
しかしガロアが私がやったようなことを考えていたかどうかは、やはり疑問である。
というのはガロアは簡単にこう書いているからだ。
なぜなら置換
xk xak+b (k、ak+bは小文字)
は二つの文字を決して同じ場所に置かないから、
方程式に二根を添加することにより、四節によれば、
その群がただ一つの順列になることは明らかである。
アーベルはすでに同じ考えに達していたようだが、
これがどういう意味なのかを、これから考えてみようと思っている。
「ガロアへのレクイエム」の中に説明があったような気もするが、
メモしていないから分らない。