16/05/22 10:45:35.95 BRNV70yy.net
>>241
おっちゃん(本当は>>200も)だが、元の問題>>2をいい換えると、
>「私」が数列空間 R^N を取る。
>次に、第k項が同じ実数 a となるような R^N の部分空間Aを取る。
>ここに、A は非可算集合であることに注意しよう。
>A の任意の数列 {a_n} を1つ取って、「あなた」に渡し、{a_n} の項 a_k を当てさせる。
>もし、a_k を当てられたら「あなた」の勝ちで、外したら「あなた」の負け。
>このとき、「あなた」が勝つ戦略はあるか?
となる。この類のゲームは、「あなた」が当てるべき箱の中身つまり a_k が、
「私」から与えられた時点でただ1つの実数となっている。
だから、必然的に「私」が勝つようなゲームになっている。
ただ、実数直線 R の濃度が非可算で、「あなた」に当てさせる a の取り方は、
「私」側にとって非可算無限通りある。ε>0 は任意とか書き出したりすると、表現がおかしくなる。
だから、「あなた」が確率は 1-ε というようにぼかしてある。