現代数学の系譜11 ガロア理論を読む18at MATH
現代数学の系譜11 ガロア理論を読む18 - 暇つぶし2ch9:現代数学の系譜11 ガロア理論を読む
16/01/16 00:02:24.19 Y3KfUbj9.net
さて、π=3.14・・・・を使って、頭から一桁の数字を、問題の箱に詰めることにしよう
・この数列は、Z<1>^Nに属する
・私が、あなたに、「箱には、πを使って、各1桁の数字を入れた」と宣言しよう
・もし、あなたが、数字を当てたいならば、数列の同値類と代表元は、Z<n>^Nから選ぶべき
・が、整数列Z^Nから同値類と代表元を選べば、代表元には一桁以外の無数の整数が含まれるから、当たる確率は減る
・詳しく書けば・・、例えば、数列が2列だったとする
・1列目の決定番号がDとする
・2列目で、D+1番目より先の箱を開け、同値類と代表を取り出す
・確率5割が時枝理論だが、別の観点から見ると、Dは1桁の数字だから、確率は1/9
・しかし、もし桁数無制限の整数列Z^Nから同値類を選んだら? 代表には一桁以外の整数が含まれるから、Dは1桁の数字に限られず、当たらなくなる
・もし、有理数列Q^Nから同値類を選んだら? ますます当たらない。実数列R^Nならますますだ
・ここで、気付く
・条件が同じであれば、100列だったら1/100。2列だったら、1/2。それは当然だが
・しかし、上で見たように、「箱には、πを使って、各1桁の数字を入れた」と分かっているなら、実数列R^Nの同値類は使うべきでなく、使うべきはZ<1>^Nの同値類なのだ


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch