現代数学の系譜11 ガロア理論を読む18at MATH
現代数学の系譜11 ガロア理論を読む18 - 暇つぶし2ch5:現代数学の系譜11 ガロア理論を読む
16/01/15 23:01:37.39 d++PCd/C.net
(趣旨は同じ)
3.つづき
問題に戻り,閉じた箱を100列に並べる.
箱の中身は私たちに知らされていないが, とにかく第l列の箱たち,第2列の箱たち第100 列の箱たちは100本の実数列S^1,S^2,・・・,SlOOを成す(肩に乗せたのは指数ではなく添字).
これらの列はおのおの決定番号をもつ.
さて, 1~100 のいずれかをランダムに選ぶ.
例えばkが選ばれたとせよ.
どの決定番号が他の列の決定番号どれよりも大きい確率は1/100に過ぎない.
 第1列~第(k-1) 列,第(k+1)列~第100列の箱を全部開ける.
第k列の箱たちはまだ閉じたままにしておく.
開けた箱に入った実数を見て,代表の袋をさぐり, S^1~S^(k-l),S^(k+l)~SlOOの決定番号のうちの最大値Dを書き下す.
 いよいよ第k列 の(D+1) 番目から先の箱だけを開ける:S^k(D+l), S^k(D+2),S^k(D+3),・・・.いま
 D >= d(S^k)
を仮定しよう.この仮定が正しい確率は99/100,そして仮定が正しいばあい,上の注意によってS^k(d)が決められるのであった.
おさらいすると,仮定のもと, s^k(D+1),s^k(D+2),s^k(D+3),・・・を見て代表r=r(s~k) が取り出せるので
列r のD番目の実数r(D)を見て, 「第k列のD番目の箱に入った実数はS^k(D)=r(D)と賭ければ,めでたく確率99/100で勝てる.
確率1-ε で勝てることも明らかであろう.


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch