16/01/16 17:05:54.42 AaUSB/SH.net
>>3-4
(>>41の続き)
>そこで, {x_n} を商集合 X(r) の代表元とする. すると, rに対して, rに収束する実数列を考えることで,
>f({r_n})={x_n} なるような実数列 {r_n}∈R^N の全体を考えることが出来る.
>そこで, {x_n} に対して f({r_n})={x_n} なる実数列 {r_n}∈R^N の全体を f^{-1}({x_n}) とする.
>このようにして f^{-1}({x_n}) を構成することは, 任意の実数列 {x_n}∈R^N/~ に対して出来る.
>そのようなことに注意して, R^N に選択公理を適用し, R^N のすべての元が一直線状に並んでいると見なす.
>R^N/~ のすべての元についても同様に選択公理を適用し, そのすべての元が一直線状に並んでいると見なす.
>すると, 直積 R^N×R^N/~ を xy平面のような平面と見なせる. このような平面上で, x軸に平行な複数の,
>y軸に垂直であるような点線を引くような, 操作を行うことである.
>これが, 代表系を袋に蓄えておくことの, 大体の幾何的な意味である.」
>任意の実数列 s に対し,袋をごそごそさぐってそいつと同値な(同じファイパーの)代表
>「としてのコーシー列」 r=r(s) を丁度一つ取り出せる訳だ. sとrとがそこから先ずっと一致する番号
>を sの決定番号 と呼び,d=d(s) と記す. つまり「sの部分列」 s_d,s_{d+1},s_{d+2}, … を知れば
>「これは無限列だから,」 sの類の代表r は決められる. 更に,何らかの事情によりdが知らされていなくても,
>ある D≧d について「sの部分列」 s_{D+1}, s_{D+2}, s_{D+3}, … が知らされたとするならば,
>「同様にこれも無限列だから,」それだけの情報で既に「コーシー列」 r=r(s)は取り出せる.
>したがって「sの決定番号」 d=d(s) も決まり, 結局s_d(実は s_d, s_{d+1}, …, s_D ごっそり)が決められる
>ことに注意しよう.