16/01/03 17:40:17.57 DKKY6nty.net
>>655
> 次に、なんらかの条件で、Dが決まるとする。但し、Dは有限とする。また、上記決定番号nがDの決定になんら影響を与えず、かつ、決定されたDも決定番号nになんら影響を与えないとする
> そうすると、決定番号nが、n<=D(有限)となる確率は? 上記と同じく、D/∞になる。ここは同意できるかね?
文章が不明瞭なので回答不可。
99個の箱を開いてDが得られる確率P(D)と、
Dが得られたという条件でn<=Dとなる条件付確率P_D(D)を
お前が明確に区別できているのかが不明瞭。よって回答不可。
> そして、100列に並べた可算無限個の箱の数列で、各列の決定番号を比較したとき、問題の列が他の99列の決定番号より大になる確率は1/100に同意する
> が、それは、上記で述べたn<=D(有限)となる確率計算(D/∞になる)とは両立するよ。ここは同意しますか?
本当にお前は何を言いたいの?両立の定義はなに?
何度も何度も同じことを言わせんなよ。
『99/100』はお前の言うところのn<=Dとなる事前確率。時枝の言うところの勝つ確率。
『D/∞』は99個の決定番号がDがだったときにn<=Dとなる条件付確率P_D(D)。
お前は本当にここを分かってるの?
当たり前だけどね、ゲームはDが得られた後に始まるわけではないの。
だから勝つ確率はお前の言うところの『D/∞』ではないの。
ゲーム開始時点(すなわち箱を開ける前)に計算される確率は
Dが得られる確率P(D)にP_D(D)を掛けてDで無限和を取ったものなの。
P_D(D)=D/∞という条件付確率は『Dが既知のゲーム』に勝つ確率なの。
このゲームはDが既知ではないの。いろんな値を取りうるの。
言っている意味分かる?