15/11/29 12:29:39.20 SasjpBzo.net
>>63
>>1)the complement of a union of open sets:yes
>結論から言うと答えはnoだと思う。
>yesだと超越基底はコンパクトになってしまう。
ああ、そうなのか。よく分からんので、代案として
>>54 Totally bounded space を使いたいがどうですか?
Definition for a metric space
A metric space (M,d) is totally bounded if and only if for every real number ε >0, there exists a finite collection of open balls in M of radius ε whose union contains M .
Equivalently, the metric space M is totally bounded if and only if for every ε >0, there exists a finite cover such that the radius of each element of the cover is at most ε.
This is equivalent to the existence of a finite ε-net.[1]
URLリンク(ja.wikipedia.org)
全有界空間
例と例外
実数直線、あるいはより一般の(有限次元)ユークリッド空間の部分集合が全有界であるための必要十分条件は、それが有界であることである。これはアルキメデスの性質より従う。
コンパクト性と完備性の関係
全有界性とコンパクト性の間には、次の良い関係が存在する:
すべてのコンパクト距離空間は、全有界である。
一様空間がコンパクトであるための必要十分条件は、それが全有界であって、コーシー完備であることである。これはユークリッド空間から任意の空間へのハイネ・ボレルの被覆定理の一般化と見なされる:その場合、有界性を全有界性に(そして閉性をコンパクト性に)代える必要がある。
全有界性とコーシー完備化の間には相互補完的な関係がある。すなわち、ある一様空間が全有界であるための必要十分条件は、そのコーシー完備化が全有界であることである(これは、ユークリッド空間においてある集合が有界であることと、その閉包が有界であることは同値という事実に対応する)。