15/12/31 19:24:24.92 DJ4l0EHl.net
>>565
話題逸らし乙。では、1つ1つ詰めていくことにしよう。
定義
集合Xと、その上の同値関係~が与えられているとする。
X/~とXが同一視できるとは、次で定義される特定の写像
X ∋ x → [x] ∈ X/~
が全単射であるときを言う(xの同値類をここでは[x]と書いた)。
あるいは、単なる言い換えだが、~が何も類別してないときを言う。
すなわち、X/~の各元が1点集合であるときを言う。あるいは、
これも単なる言い換えだが、同値関係~が次のように定義されているときを言う。
・ x ~ y ⇔ x=y.
これが、俺の定義する、今回の意味での「同一視」だ。
この意味においては、R^N/~ と R^N は明らかに同一視できない。
その証明は>>556に書いた。一方で、お前はその>>556を、>>561において
「そういうことではない」と切り捨てた。そして、>>561において
>証明すべきはR^NとR^N/~間に全単射が存在しないことだよ。
このように書いた。となれば、お前の定義する「同一視」は、俺の定義する「同一視」とは
異なっていることになる。そのこと自体は、別に問題ではない。単に流儀の違いがあるだけだ。
では、今度はお前の番だ。お前の定義する「同一視」を書け。