現代数学の系譜11 ガロア理論を読む17at MATH
現代数学の系譜11 ガロア理論を読む17 - 暇つぶし2ch56:uire only finitely many subsets. A related notion is a totally bounded set, in which only a subset of the space needs to be covered. Every subset of a totally bounded space is a totally bounded set; but even if a space is not totally bounded, some of its subsets still will be. Definition for a metric space A metric space (M,d) is totally bounded if and only if for every real number ε >0, there exists a finite collection of open balls in M of radius ε whose union contains M . Equivalently, the metric space M is totally bounded if and only if for every ε >0, there exists a finite cover such that the radius of each element of the cover is at most ε. This is equivalent to the existence of a finite ε-net.[1] 参考 日wiki https://ja.wikipedia.org/wiki/%E5%85%A8%E6%9C%89%E7%95%8C%E7%A9%BA%E9%96%93 全有界空間 位相幾何学および関連する数学の分野において、全有界空間(ぜんゆうかいくうかん、英: totally bounded space)とは、・・・




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch