15/12/30 18:03:57.86 mXaeJ8Mj.net
>>461
だまし絵をもう一度見ておこう
<元の問題>
1.(非加算無限ある)任意の実数を入れた箱が、可算無限個用意されている。その中の一つに入っている数を当てる問題。どの箱の数を当てるかは解答者が選べる。そして他の残りの箱は全て開けて良いという条件。
2.ここで考えてみると、解答者が選んだ箱と、残りの開ける箱とは何の相関関係もない。かつ、実数は非加算無限で、箱は可算無限だから、解答者が選んだ箱の数の可能性は、開けた箱に入っている数からは絞り込めない。だから、原理的に一つ残る箱の数の可能性は無限大のまま
<時枝先生のだまし絵>
1.箱の無限数列と、実数からなる数列R^Nのしっぽから先の同値類と、商集合R^N/~と、代表元と、決定番号と、1/100の確率と
2.箱を100列に並べるという。だが、並べ方に何の規則もない。だから、箱の中身を当てる役には立たないはず
3.実数からなる数列R^Nのしっぽから先の同値類と、商集合R^N/~と、代表元と、決定番号とを使うという
4.確かに、エクセルの数値実験では、各列の決定番号が他より大きい確率は、1/100に収束すると思われる(エクセルで扱える場合を超えるので、100より小さい値で計算した)
5.が、これは数列の長さが無限大になった極限での話で、ゆえに決定番号も無限大、第k列の決定番号と他の列の決定番号との比較も、極限を考えた無限大の世界での話
6.無限大の世界での話なら、シッポの先は決まっても、残された根本(ねもと)の部分も無限大になっちゃうんじゃないかな?
7.勿論有限の決定番号や有限の最大値Dになる場合もあるだろう。が、列の長さが無限大である以上、話が有限で済む確率は? 無限小では?