15/12/30 13:46:44.26 mXaeJ8Mj.net
つづき
URLリンク(ja.wikipedia.org)
例
主観確率にも主観性の程度にいろいろ違いがある。次の例を考えよう。
「さいころをランダムに2回振って、出た目の数の和をとる。この結果が6だったときに、さいころの目として1が出ていた確率を求めよ」
これは数学的には正確に定義できて簡単に計算できる(答:2/5)。
ところが、このように後になってから前の事実を推測する確率(後の結果を条件とする前の事実についての条件付き確率、つまり事後確率)も、
頻度主義から見れば一種の主観確率である。ランダムなさいころの目を原因として結果の6が現れたのであって、結果の6をもとにしてランダム変数が現れるわけではない、というわけだ。
このことを端的に示すのがモンティ・ホール問題である。
これは3つのなかに1つだけ存在するアタリを当てるゲームだが、最初は3択だった問題が途中で2択に切り替わる(1つ選んだあとでハズレの1個が示され、残り2つから選ぶようになる)。
2択段階でアタリの確率を求めるのに、単なる2択として計算すると1/2(直感的にこう考える人が多い)だが、実際はそうではなく、最初に選んだ方が1/3、選ばなかった方が2/3とするのが正しい。
一方、頻度主義の考え方では、過去の原因を仮定した上で現在の結果が現れる条件付き確率を考え、これを尤度、あるいはいろいろな原因を変数とする関数とみて尤度関数という(これは原因に関する確率ではない)。そして尤度の最も高い原因を事実と推定するわけである。