15/12/30 12:02:13.34 mXaeJ8Mj.net
>>497 追加
(数値実験結果追加)
1.m=4列で、札が1~40(=n)のとき、確率 0.23765625。nが増えると、確率が上がる。なるほど、1/4=0.25に近づくか>>494
2.100列計算は、エクセルではエラーになる。おそらく、べきで100乗が扱えないのだろう
3.そこで、10列計算にする。m=10列で、札が1~10(=n)のとき、確率 0.057430499。札が1~20(=n)のとき、確率 0.076870633。1/10=0.1に近づくか
4.20列計算にする。m=20列で、札が1~20(=n)のとき、確率 0.028908577。札が1~40(=n)のとき、確率 0.038486431。1/20=0.05に近づくか
5.問題は、決定番号の分布が均一(いわゆるホワイトノイズ)で、nが無限大で1/mに近づく*)かどうかだが、それは言えそうだね>>494
とすると、時枝マジック(だまし絵)の”たねとしかけ”は、同値類と決定番号にあるのか・・・(^^;
*)重複順列の定理として、これはどこかで証明されていそうだね。重複順列でなく、通常の順列でも