15/12/30 02:50:33.80 2X+yPHPV.net
流れが変だったから修正した。すまんがこっち見て。
【準備】
S∈R^N、S'∈R^N、S={sn}、S'={s'n} とする。
同値関係 ~ を次により定義する。
∃n0:n≧n0⇒sn=s'n のとき S~S'
【命題】
R^N/~ と R^N は同一視できる。
【証明】
S~∈R^N/~ とする。
S~ に属す全ての実数列が共通の部分列を含まないと仮定すると、
ある S∈S~,S'∈S~ が存在して、S,S'は共通の部分列を含まないはずであるが、
これは ~ の定め方と矛盾する。
よって、S~ に属す全ての実数列は共通の部分列 T∈R^N を含む。
写像 φ:R^N/~→R^N を φ(S~)=T で定義する。
~ の定め方から、φは全単射である。
ゆえに、主張は正しい。■