15/12/19 21:11:36.50 VtRJxPeF.net
>>302
「随伴関手の存在に関する定理から選択公理を導くことができる.」か。選択公理は、結構自然なのかな
URLリンク(alg-d.com)
圏論 2015年3月 7日更新
随伴関手の存在に関する定理から選択公理を導くことができる.
定理 次の命題は( ZF 上)同値.
1.選択公理
2.C, D を圏, F: C→D を関手とする.任意の d∈D に対して F から d への普遍射が存在するならば, F は右随伴を持つ.
3.C を余完備な圏, D を圏, F: C→D を余連続な関手とする. F はsolution set conditionを満たすとする.このとき F は右随伴を持つ.(General Adjoint Functor Theorem)
4.C を余完備かつco-wellpoweredで,generatoring setを持つ圏, D を圏, F: C→D を余連続な関手とする.このとき F は右随伴を持つ.(Special Adjoint Functor Theorem)
5.C, D, U を圏, F: C→D , E: C→U を関手として,各 d∈D に対して余極限 colim(F↓d→C→U) が存在するとする.このとき F に沿った E の左Kan拡張 F†E が存在し, F†E(d) ? colim(F↓d→C→U) である.