15/12/12 20:15:28.70 H8eM6+Di.net
>>275
分かりました(^^;
"L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。"
URLリンク(ja.wikipedia.org)
超越次数(ちょうえつじすう、英: transcendence degree)は抽象代数学において、体の拡大 L /K の「大きさ」のある種のかなり粗いはかり方である。
きちんと言えば、K 上代数的に独立な L の部分集合の最も大きい濃度として定義される。
L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。
すべての体拡大は超越基底をもち、すべての超越基底は同じ濃度をもつことを証明できる。この濃度は拡大の超越次数に等しく、trdegK L や trans. degK L, trdeg(L /K) などと表記される。
URLリンク(en.wikipedia.org)
In abstract algebra, the transcendence degree of a field extension L /K is a certain rather coarse measure of the "size" of the extension.
Specifically, it is defined as the largest cardinality of an algebraically independent subset of L over K.
A subset S of L is a transcendence basis of L /K if it is algebraically independent over K and if furthermore L is an algebraic extension of the field K(S) (the field obtained by adjoining the elements of S to K).
One can show that every field extension has a transcendence basis, and that all transcendence bases have the s