15/12/06 10:35:52.81 nAIWzbvn.net
>>219
何が言いたいのか全然わからん。もう面倒くさいから証明形式にする。
>>203の書き方ができることを以下で証明する。示すべきは
>Q(S)={ g(s_1,…,s_n) / f(s_1,…,s_n)|n≧1, s_i∈S は全て異なる, f(X_1,…,X_n),g(X_1,…,X_n)∈Q[X_1,…,X_n], f(s_1,…,s_n)≠0 }
という書き方である。"⊃" は明らかだから、"⊂" のみ示す。
α∈Q(S) を任意に取る。α=b/a を満たす a,b∈Q[S] が取れる。>>214の
>Q[S]={ f(s_1,…,s_n)|n≧1, s_1,…,s_n∈S, f(X_1,…,X_n)∈Q[X_1,…,X_n] }
という表現により、
a=f(s_1,…,s_n), b=g(r_1,…,r_m), f(X_1,…,X_n)∈Q[X_1,…,X_n], g(X_1,…,X_m)∈Q[X_1,…,X_m]
と表せる。ここで、s_1,…,s_n,r_1,…,r_m 全体の中から異なる元を全て選び出し、適当に番号をつけて
t_1,t_2,…,t_d とでもしておく。このとき、ある F(X_1,…,X_d), G(X_1,…,X_d)∈Q[X_1,…,X_d] が存在して
f(s_1,…,s_n)=F(t_1,…,t_d), g(r_1,…,r_m)=G(t_1,…,t_d)
と表せる(ほぼ自明)。よって、α=G(t_1,…,t_d)/F(t_1,…,t_d) と表せる。
まとめると、次が言えたことになる。
任意の α∈Q(S) に対して、ある d とある t_1,…,t_d∈S と
ある F(X_1,…,X_d), G(X_1,…,X_d)∈Q[X_1,…,X_d] が存在して
α=G(t_1,…,t_d)/F(t_1,…,t_d) と表せる。
よって、"⊂" が成り立つ。
以上より、>>203の書き方は「できる」。
237:132人目の素数さん
15/12/06 10:40:55.10 2BLmvYWj.net
>>221
>そういうことを考えつくというのは、天才ですね
>ルベーグ可測がいまいち分かってないのですが、すばらしい着想ですね(^^;
俺がにわか勉強で得た知識によると『ルベーグ測度の正則性定理』が非常に強力だと感じた。
Steinhausもこの正則性から導かれるようだ。
238:現代数学の系譜11 ガロア理論を読む
15/12/06 10:45:32.68 FrVQLg+h.net
>>220
どうも。スレ主です。
TAさん、レスありがとう
>Q~(S)=Cとなるような集合Sを取ったとき、それが"超越基底"になるとは限らないんだが。
>超越基底の要件である代数的独立性が保証されない。
それを保証するのが選択公理でしょうね
1.Q~に一つ超越数s1∈T(>>207)を取る。そして、超越拡大体Q~(s1)を作る
2.s2∈T∩Q~(s1)を取る。超越拡大体Q~(s1,s2)を作る
3.s2の代数的独立は、s2∈T∩Q~(s1)で保証されている
4.これを繰り返し、Q~(s1,s2・・・)=Cとなるように、集合{s1,s2・・・}を定める。これが私の超越基底Sの定義
これ、数学的には選択公理と超限帰納法ですかね。
詳しくは、>>215の公理的集合論 特別企画 これから学ぶ人のために 渕野 数学,Vol.65, No.4 (2013), 411--420. のHamel 基底の構成などを参照してもらえればと思います
239:220
15/12/06 10:50:33.03 2BLmvYWj.net
>>224
今度は代数的独立の定義を議論しなきゃならんね。
>2.s2∈T∩Q~(s1)を取る。超越拡大体Q~(s1,s2)を作る
>3.s2の代数的独立は、s2∈T∩Q~(s1)で保証されている
上の『T∩Q~(s1)』は『T\Q~(S1)』の間違いかな?
まずは確認させてくれ。
240:220
15/12/06 11:04:36.21 2BLmvYWj.net
>>225
『T∩Q~(s1)』ではなく『T\Q~(s1)』だったとする。
>>78
> 再度wikiの例を引っ張る。
> 「Q(π, e) の Q 上の超越次数は 1 か 2 である。正確な答えは知られていない、なぜならば π と e が代数的に独立かどうか知られていないからだ。」
> ここでは超越次数を1としよう。
> するとQ(π,e)の超越基底は1つの元で構成されることになる。たとえばそれをπとする。
> Q(π,e)の超越基底が{π}ということは、Q(π,e)/Q(π)が代数的であることを意味する。
> 言い換えると、Qにπを添加した体Q(π)を係数とする多項式の根としてeを生成できるという意味だ。
この例でs1=π,s2=eとする。
このときs2∈T\Q~(s1)だが集合{s1,s2}は代数的独立ではない。
超越基底を構成するにはs2∈T\(Q~(s1)の代数拡大体)なるs2を取らなければならない。
241:132人目の素数さん
15/12/06 11:13:05.59 o2QvLz7R.net
>>222
例えば、Λを非可算濃度の添数集合、Gを非可算の可換群としよう。
選択公理を使えば、Gの元の積 Π_{λ∈Λ}g_λ g_λ∈G の逆元を
Π_{λ∈Λ}(g_λ)^{-1} (g_λ)^{-1}∈G として、普通のときと同様に考えることが出来る。
そんな感じで、非可算個の積の群論とかの代数の理論を考えることは出来ないか?
雰囲気だけになったけど、>>219でいわんとしたことは、そんな感じ。
もしそのような雰囲気で分からないなら、それでいい。
242:128
15/12/06 11:24:27.03 nAIWzbvn.net
>>227
まるで会話になっていない。お前は>>203の表現について「できない」とイチャモンをつけていたのであり、
俺はそれに対して「>>203の表現は で き る 」と反論していたのである。>>203の表現が「できる」ことは
もはや明らかであり、証明は>>222で与えた。従って、お前が俺に対して行うことのできるレスは
・ 確かに>>203の表現は可能だった。俺が間違っていた。
の1通りしかない。それ以外のレスは「会話になっていない」。
お前は>>219で唐突に「別の話題」を持ち出し、>>203の表現がどうこうという話をやめてしまった。
お前がどのように新しい代数の論理を作るかという話なんぞ、俺は全くしていない。
別の話を持ち出して誤魔化さないで、>>203について決着をつけろ。>>203の表現が「できる」ことは
もはや明らかであり、証明は>>222で与えた。お前が俺に対して行うことのできるレスは
・ 確かに>>203の表現は可能だった。俺が間違っていた。
の1通りしかない。このことを認めて、その趣旨を次のお前のレスで明記し、謝罪しろ。
誤魔化して違う話題を持ち出すのは許さない。
243:132人目の素数さん
15/12/06 11:28:43.86 o2QvLz7R.net
>>228
>・ 確かに>>203の表現は可能だった。俺が間違っていた。
これは認める。いっちゃもん付けて悪かった。
244:132人目の素数さん
15/12/06 11:41:24.31 o2QvLz7R.net
>>221
Steinhausの定理は、局所コンパクト群やハ―ル測度の理論で重要で、
直線上のルベーグ測度のときは、その特殊例。より一般化出来る。
245:現代数学の系譜11 ガロア理論を読む
15/12/06 11:51:16.53 FrVQLg+h.net
>>226
どうも。スレ主です。
>この例でs1=π,s2=eとする。
>このときs2∈T\Q~(s1)だが集合{s1,s2}は代数的独立ではない。
正確には、代数的独立かどうかは分からないだね
>超越基底を構成するにはs2∈T\(Q~(s1)の代数拡大体)なるs2を取らなければならない。
超越拡大Q~(s1)を構成したときに、s1と代数的従属な元は、全て大Q~(s1)に含まれる。定義からそうなる
ご指摘の点は、”代数拡大体)なるs2を取らなければならない”を、現代数学がまだそこまで発展していないということでしょう
が、同じことは、Hamel 基底にも言える。Hamel 基底を、構成するときに、本当は、加法で独立な超越数s2を取る必要がある。それを仮想するしかない。それが、いまの現代数学の到達レベル
が、Hamel 基底も超越基底も、同じと私は考えます
246:132人目の素数さん
15/12/06 11:53:58.00 sCsU94hY.net
sssp://o.8ch.net/1eqh.png
247:220
15/12/06 12:02:45.64 2BLmvYWj.net
>>231
>正確には、代数的独立かどうかは分からないだね
スレ主、議論が噛み合っていないよ。
s2∈R\Q~(s1)であっても{s1,s2}が代数的独立とは限らない例を挙げるために、
>>78>>226では以下の仮定を入れているんだ。だからここでは{s1,s2}は代数的従属だよ。
> ここでは超越次数を1としよう。
> するとQ(π,e)の超越基底は1つの元で構成されることになる。たとえばそれをπとする。
下記が間違っているんだ。
>超越拡大Q~(s1)を構成したときに、s1と代数的従属な元は、全て大Q~(s1)に含まれる。定義からそうなる
ある元が代数的従属というのは、Q~(s1)係数多項式の根として表されるという意味であって、
必ずしも体Q~(s1)に含まれているとは限らないんだよ。
メンター、大変すまないがこの件でコメントをもらえないだろうか。
このスレが始まって以降、スレ主と俺の議論が噛み合わないまま、お互いかなりの時間を費やしている。
そろそろ俺が間違っているのかスレ主が間違っているのか決着をつけたいんだ。
248:現代数学の系譜11 ガロア理論を読む
15/12/06 12:33:02.72 FrVQLg+h.net
>>233
どうも。スレ主です。
TAさん、ありがとう
自動的には保証されないか・・
URLリンク(ja.wikipedia.org)
体の拡大
拡大 K/k が与えられたとき、K の元 α1, α2, ..., αn に対して、恒等的に 0 でない n 変数の多項式 F(X1, X2, ..., Xn) で
F(α1, α2, ..., αn) = 0 を満たすものが存在するとき、α1, α2, ..., αn は代数的従属 (algebraically dependent) であるといい、
そうでないとき代数的独立 (algebraically independent) であるという。
(引用おわり)
では、修正版
1.Q~に一つ超越数s1∈T(>>207)を取る。そして、超越拡大体Q~(s1)を作る
2.s2∈T∩Q~(s1)| s2はs1と代数的に独立に取る。超越拡大体Q~(s1,s2)を作る(s2の代数的独立は、「s2はs1と代数的に独立に取る」で保証されている)
3.s3∈T∩Q~(s1,s2)| s3はs1,s2と代数的に独立に取る。超越拡大体Q~(s1,s2,s3)を作る
4.これを繰り返し、Q~(s1,s2,s3・・・)=Cとなるように、集合{s1,s2,s3・・・}を定める。これが私の超越基底Sの定義
以下は同じ
249:220
15/12/06 12:39:31.83 2BLmvYWj.net
>>234
>4.これを繰り返し、Q~(s1,s2,s3・・・)=Cとなるように、集合{s1,s2,s3・・・}を定める。これが私の超越基底Sの定義
{s1,s2,s3・・・}の代数的独立性を確保しながらQ~(s1,s2,s3・・・)=Cとできるとは限らないんだよ。
Q~{s1,s2,s3・・・}の代数拡大体がCとな�
250:チた時点で、もう代数的独立なC\Q~{s1,s2,s3・・・}の元は取れない。 このとき ■Q~{s1,s2,s3・・・}の代数拡大体=Cではあるが、 ■Q~{s1,s2,s3・・・}=Cとは限らないんだ。
251:132人目の素数さん
15/12/06 12:52:33.73 o2QvLz7R.net
>>233
やはり、>>234の
>集合{s1,s2,s3・・・}を定める。これが私の超越基底Sの定義
が間違っている。card(S)=c である以上、こういう記述は出来ない。
>>231の
>いまの現代数学の到達レベルが、Hamel 基底も超越基底も、同じ
という解釈も間違っている。
252:現代数学の系譜11 ガロア理論を読む
15/12/06 12:53:55.98 FrVQLg+h.net
>>128 ここに戻る
>定理2 RのQ上の超越基底であって、ルベーグ可測なものが存在する。
>定理3 RのQ上の超越基底であって、ルベーグ非可測なものが存在する。
これ、具体的イメージが湧かないんだ(^^;
>>207 ここに戻る
>**)>>128>>174のSteinhaus theoremと定理4 RのQ上の超越基底Sに対して、「Q(S)はルベーグ非可測」「Q(S)はゼロ集合」「 Q(S)=R 」のいずれかが成り立つ。
>からすれば、Q(Sr)≠Rなので、「Q(S)はルベーグ非可測」か。だが、R=Q~r∪Q(Sr)、Q~rは可算なんだよね。"
ここも、すとんと腑に落ちないんだよね
TAさん、ここどう思う?
おっと、後の話は、>>233が決着した後の話だが
TAさんは、『ルベーグ測度の正則性定理』や、”Steinhausの定理は、局所コンパクト群やハ―ル測度の理論で重要で”とか、ルベーグ測度に私より詳しそうだから(^^;
253:220
15/12/06 13:06:27.78 2BLmvYWj.net
>>237
>>207の
>Q~rは可算から、ルベーグ測度m(Q~r)=0。従って、Q(Sr)がルベーグ可測とすれば、m(Q(Sr))≠0でなければならない(当然無限大)
の"従って"以下はなぜ従うんだっけ?Q(Sr)がゼロ集合の可能性はなぜ除かれるの?
>TAさんは、『ルベーグ測度の正則性定理』
さっきも書いたがこれはにわか勉強の成果だ。
Steinhausを使うからには導出を理解せねばと思い勉強した。
すなわち、ルベーグ測度を網羅的に勉強したことなどこれまでにないという意味だ。
>”Steinhausの定理は、局所コンパクト群やハ―ル測度の理論で重要で”とか、ルベーグ測度に私より詳しそうだから(^^;
これを書いたのは俺ではない。そんな高等な知識は持っていないw
254:現代数学の系譜11 ガロア理論を読む
15/12/06 13:18:45.00 FrVQLg+h.net
>>235
どうも。スレ主です。
TAさん、ありがとう
>{s1,s2,s3・・・}の代数的独立性を確保しながらQ~(s1,s2,s3・・・)=Cとできるとは限らないんだよ。
>Q~{s1,s2,s3・・・}の代数拡大体がCとなった時点で、もう代数的独立なC\Q~{s1,s2,s3・・・}の元は取れない。
その取れない元をx∈Cとする
xは、有理数か、無理数。無理数の場合、代数的無理数か超越数か。
有理数の場合、Q~に含まれているべき
代数的無理数も、Q~に含まれているべき
超越数の場合、代数的に独立なら、Sに加えれば良い
超越数の場合、代数的に従属な元で、Q~{s1,s2,s3・・・}に含まれない元があるか?ってこと
{s1,s2,s3・・・sn}は代数独立で、かつF(s1, s2, ..., sn,x) = 0 となるxが存在するか?
なるほど、そういうxが存在する余地はあるのかも・・。が、それ、超越基底の一意性と両立するのか?
来週の宿題だな(^^;
255:220
15/12/06 13:27:08.37 2BLmvYWj.net
>>239
>{s1,s2,s3・・・sn}は代数独立で、かつF(s1, s2, ..., sn,x) = 0 となるxが存在するか?
>なるほど、そういうxが存在する余地はあるのかも・・。が、それ、超越基底の一意性と両立するのか?
>来週の宿題だな(^^;
OK、じゃあ今度ということで。
256:132人目の素数さん
15/12/06 21:15:53.30 yXI+2zz1.net
___
/| |
||. |∧_∧|
||. (´・ω・| うわっ、クソスレに来てしまった。
||oと. U|
|| |(__)J|
||/ ̄ ̄
___
| |
| |
| o|
| |
| |
彡 ̄ ̄ パタン
257:現代数学の系譜11 ガロア理論を読む
15/12/11 22:09:29.52 aqTgmiKS.net
>>240
どうも。スレ主です。
TAさんの深く鋭い指摘で、いろいろ勉強させてもらいました。ありがとうございました
半分解決しました
が、疑問が残っています
で、順番にいきましょう
258:現代数学の系譜11 ガロア理論を読む
15/12/11 22:10:46.41 aqTgmiKS.net
まずこれから
1.有限次超越拡大のアナロジー
1)Q(√2,π,√π)を取る。Q(√2)⊂Q(√2,π)⊂Q(√2,π,√π)=Q(√2,√π)である。つまり、√2と√πによる拡大で、超越基底は√πである。
2)ある人が、Q(√2,π,√π)の超越基底を√2とπ考えたとする。しかし、√πの存在に気づいた。「πと√πは代数的独立ではないのでだめだから、終わり」とはならない。「πと√πを取り換えるべし」が正解。
3)∵π=(√2)^2だから。そこで、一歩進めて、s1=f(s2) (2次以上の多項式で係数は元の体)とできるとき*)、s2はs1に対し上位の超越数と呼ぶことにする。
(*) 陰関数 f(s1,s2)も考えるべきだが、話を単純化した。)
4)これは、有限次の超越拡大だが、無限次でも同様のはず。つまり、Q~(代数的数)→C(複素数)の無限次の超越拡大で、超越基底S={・・・、s1,s2,s3,・・・}で取り残しのある超越数xに気づいたとする。
もし、それがすでに取った超越基底S={・・・、s1,s2,s3,・・・}と代数独立でないとき、例えばxはs1に対し上位の超越数なら、超越基底Sのs1はxに変えるべき。
5)これは、s1に限らずすべての基底{・・・、s1,s2,s3,・・・}に対して比較が行われるべき。
6)手順としては、むしろ、一度xを取り込んで、{・・・、s1,s2,s3,・・・,x}として、再度代数的独立が保たれるように、再調整するとした方がすっきりした説明だろう。
259:現代数学の系譜11 ガロア理論を読む
15/12/11 22:15:53.26 aqTgmiKS.net
>>243 つづき
2.これで済めば簡単だが、そうでもない。
”Q~(代数的数)→C(複素数)の無限次の超越拡大で、超越基底S={・・・、s1,s2,s3,・・・}で、具体的数は超越基底にできない。(Q~(代数的数)→C(複素数)拡大における超越基底の具体的数不可定理と名付ける)”
(証明)
1)まず、π?超越基底S={・・・、s1,s2,s3,・・・}とする。しかし、π=(√2)^2だから、√πに変えられるべき。と同様に、π^(1/n)(n乗根)の方が適切だ。が、nはいくらでも大きく取れる。
2)同じ論法は、任意の超越数で成り立つ(n乗根の方が適切で、nはいくらでも大きく取れる)
3)だから、具体的数(超越数)は、より上位の数が存在するゆえ、超越基底にできない!
260:現代数学の系譜11 ガロア理論を読む
15/12/11 22:18:55.70 aqTgmiKS.net
>>244 つづき
3.Q~(代数的数)→C(複素数)の無限次の超越拡大では、陰に代数閉包、代数閉体の思想が潜んでいる
(C(複素数)は、代数閉体であることが陰に潜んでいる。これを意識する必要がある。)
1)上記2で、n乗根を考えたが、s1=f(s2) (2次以上の多項式で係数は元の体)なるn次方程式も考えるべき
2)そうすると、Q~(π)の代数閉包Q~(π)~を考えて、すべてのπのQ~上代数的な数を取り込んだ体を考えた方が良いだろう
3)では、Q~(π)→代数閉包Q~(π)~への拡大は、Q~→Q~(π)~当然超越拡大として、加算無限次の超越拡大と考えられる(予想-問題T1)
4)このようにして、Q~(代数的数)→C(複素数)の場合に、中間段階で超越基底Sn={s1,s2,s3,・・・,sn}→S(n+1)={s1,s2,s3,・・・,sn,s(n+1)}とするときに
Q~(s1,s2,s3,・・・,sn,s(n+1))→Q~(s1,s2,s3,・・・,sn,s(n+1))~を考えることができる。
5)このように、Q~(代数的数)→C(複素数)を考える場合においては、超越基底を一つ増やす毎に、代数閉体までの拡大を考えて、取り残しがないようにすることができる。
6)こうすることで、Q~(代数的数)→C(複素数)における超越基底S={・・・、s1,s2,s3,・・・}で、Q~(代数的数)→Q~{・・・、s1,s2,s3,・・・}~=C(複素数)とできる。(予想-問題T2)
(この場合、代数閉包を考えているので、代数的従属な超越数の取りこぼしはない。問題T2は、同型を除いて一意かもしれない。)
(問題T1)と(問題T2)の証明は、そのうち思いつくだろう。(ガロア語録)
みなさんも、考えて下さい。
261:現代数学の系譜11 ガロア理論を読む
15/12/11 22:22:01.19 aqTgmiKS.net
>>245 つづき
4.では、Q(有理数)→R(実数)の拡大ではどうか? Q~の実数部分の部分集合をRe(Q~)、複素数体における超越数の集合をTとしてその実数部分の部分集合をRe(T)とする。
3と類似の論法が、実数の場合に成り立つ(予想-問題T3)。
(R(実数)は、代数閉体ではないが、一度複素数の空間に移動して、そこで3の論法を行って、それを実数に戻すことができるだろう。(予想-問題T3))
262:現代数学の系譜11 ガロア理論を読む
15/12/11 22:24:26.99 aqTgmiKS.net
>>242-245
以上が、いまの私の考えです
Q~(代数的数)→C(複素数)の無限次の超越拡大で、超越基底のなぞが、ますます深くなりました(^^;
263:現代数学の系譜11 ガロア理論を読む
15/12/11 23:03:59.78 aqTgmiKS.net
>>245 訂正
5)・・・・、代数閉体までの拡大を考えて、取り残しがないようにすることができる。
↓
5)・・・・、代数閉包までの拡大を考えて、取り残しがないようにすることができる。
追加
URLリンク(ja.wikipedia.org)
代数的閉包
例
代数学の基本定理により、実数体の代数的閉包は複素数体である。
有理数体の代数的閉包は代数的数体である。
代数的数体を真に含み複素数体に含まれる代数的閉体は可算個存在する。これらは有理数体の超越拡大の代数的閉包である。例えば Q(π) の代数的閉包。
264: ◆S/YLxH/p.c
15/12/11 23:06:05.74 csqAUDBo.net
最初に無があった
無は有を生んだ
これが全ての真理
265:現代数学の系譜11 ガロア理論を読む
15/12/11 23:07:00.17 aqTgmiKS.net
>>243 訂正
2)ある人が、Q(√2,π,√π)の超越基底を√2とπ考えたとする。
↓
2)ある人が、Q(√2,π,√π)の超越基底をπ考えたとする。
3)∵π=(√2)^2だから。
↓
3)∵π=(√π)^2だから。
266:現代数学の系譜11 ガロア理論を読む
15/12/11 23:14:04.79 aqTgmiKS.net
>>249
どうも。スレ主です。
検索すると下記が最初かね?
前 - 2ch
c.2ch.net/test/-M1.SSS/energy/1437052392/-450
448:◇S/YLxH/p.c 11/29
267:(日) 23:33 fWuaxzmW 最初に無があった 無は有を生んだ これが全ての真理
268:現代数学の系譜11 ガロア理論を読む
15/12/11 23:16:54.24 aqTgmiKS.net
>>244 訂正
1)まず、π?超越基底S={・・・、s1,s2,s3,・・・}とする。しかし、π=(√2)^2だから、
↓
1)まず、π∈超越基底S={・・・、s1,s2,s3,・・・}とする。しかし、π=(√π)^2だから、
訂正が多い
おっちゃんと同じだ(^^;
269:現代数学の系譜11 ガロア理論を読む
15/12/12 06:13:49.02 H8eM6+Di.net
>>242-245 訂正が多いので、書き直し
1.有限次超越拡大のアナロジー
1)Q(√2,π,√π)を取る。Q(√2)⊂Q(√2,π)⊂Q(√2,π,√π)=Q(√2,√π)である。つまり、√2と√πによる拡大で、超越基底は√πである。
2)ある人が、Q(√2,π,√π)の超越基底を(まちがって)πと考えたとする。しかし、√πの存在に気づいた。「 πと√πは代数的独立ではないのでだめ。終わり」とはならない。「 πと√πを取り換えるべし」が正解。
3)∵π=(√π)^2だから。そこで、一歩進めて、二つの超越数に対し s1=f(s2) (2次以上の多項式で係数は元の体)とできるとき*)、s2はs1に対し上位の超越数と呼ぶことにする。
(*) 陰関数 f(s1,s2)も考えるべきだが、話を単純化した。)
4)これは、有限次の超越拡大だが、無限次でも同様のはず。つまり、Q~(代数的数)→C(複素数)の無限次の超越拡大で、超越基底S={・・・、s1,s2,s3,・・・}で取り残しのある超越数xに気づいたとする。
もし、それがすでに取った超越基底S={・・・、s1,s2,s3,・・・}と代数独立でないとき、例えばxはs1に対し上位の超越数なら、超越基底Sのs1はxに変えるべき。
5)これは、s1に限らず、すべての基底{・・・、s1,s2,s3,・・・}に対して比較が行われるべき。
6)手順としては、むしろ、一度xを取り込んで、{・・・、s1,s2,s3,・・・,x}として、再度代数的独立が保たれるように、再調整するとした方がすっきりした説明だろう。
270:現代数学の系譜11 ガロア理論を読む
15/12/12 06:20:22.10 H8eM6+Di.net
2.これで済めば簡単だが、そうでもない。
”Q~(代数的数)→C(複素数)の無限次の超越拡大で、超越基底S={・・・、s1,s2,s3,・・・}では、具体的超越数は超越基底にできない。
(これを、Q~(代数的数)→C(複素数)拡大における超越基底の具体的超越数不可定理と名付ける)”
(証明)
1)まず、π∈超越基底S={・・・、s1,s2,s3,・・・}とする。しかし、π=(√π)^2だから、πは√πに変えられるべき。と同様に、π^(1/n) (=n乗根)の方が適切だ。が、nはいくらでも大きく取れる。
2)同じ論法は、任意の超越数で成り立つ(常にn乗根の方が適切で、nはいくらでも大きく取れる)(n乗根だけでなく、n次の方程式の根も)
3)だから、具体的超越数は、より上位の超越数が存在するゆえ、超越基底にできない!
271:現代数学の系譜11 ガロア理論を読む
15/12/12 06:27:23.52 H8eM6+Di.net
3.Q~(代数的数)→C(複素数)の無限次の超越拡大では、陰に代数閉包、代数閉体の思想が潜んでいる
(言い換えれば、C(複素数)は、代数閉体であることが陰に潜んでいる。これを意識する必要がある。)
1)上記2で、n乗根を考えたが、s1=f(s2) (2次以上の多項式で係数は元の体)なるn次方程式も考えるべき
2)そうすると、Q~(π)の代数閉包Q~(π)~を考えて、すべてのπのQ~上代数的な数を取り込んだ体を考えた方が良いだろう
3)では、Q~(π)→代数閉包Q~(π)~への拡大とは何か? Q~(π)→Q~(π)~は、当然超越拡大として、加算無限次の超越拡大と考えられる((予想)問題T1)
4)このようにして、Q~(代数的数)→C(複素数)の場合に、中間段階で超越基底Sn={s1,s2,s3,・・・,sn}→S(n+1)={s1,s2,s3,・・・,sn,s(n+1)}とするときに
代数閉包へ拡大 Q~(s1,s2,s3,・・・,sn,s(n+1))→Q~(s1,s2,s3,・・・,sn,s(n+1))~を考えることができる。
5)即ち、Q~(代数的数)→C(複素数)を考える場合においては、超越基底を一つ増やす毎に、代数閉包までの拡大を考えて、取り残しがないようにすることができる。
6)こうすることで、Q~(代数的数)→C(複素数)における超越基底S={・・・、s1,s2,s3,・・・}で、Q~(代数的数)→Q~{・・・、s1,s2,s3,・・・}~=C(複素数)とできる。((予想)問題T2)
(この場合、代数閉包を考えているので、代数的従属な超越数の取りこぼしはない。問題T2は、同型を除いて一意かもしれない。)
URLリンク(ja.wikipedia.org)
代数的閉包
例
・代数学の基本定理により、実数体の代数的閉包は複素数体である。
・有理数体の代数的閉包は代数的数体である。
・代数的数体を真に含み複素数体に含まれる代数的閉体は可算個存在する。これらは有理数体の超越拡大の代数的閉包である。例えば Q(π) の代数的閉包。
(引用おわり)
(問題T1)と(問題T2)の証明は、そのうち思いつくだろう。(ガロア語録)
みなさんも、考えて下さい。
272:現代数学の系譜11 ガロア理論を読む
15/12/12 06:28:58.17 H8eM6+Di.net
4.では、Q(有理数)→R(実数)の拡大ではどうか? Q~の実数の部分集合をRe(Q~)、複素数体における超越数の集合をTとしてその実数の部分集合をRe(T)とする。
上記3と類似の論法が、実数の場合に成り立つ((予想)問題T3)。
(R(実数)は、代数閉体ではない。が、一度複素数の空間に移動して、そこで3の論法を行って、それを実数に戻すことができるだろう。
273:現代数学の系譜11 ガロア理論を読む
15/12/12 06:30:33.79 H8eM6+Di.net
>>253-256
全部書き直しました
以上が、いまの私の考えです
Q~(代数的数)→C(複素数)の無限次の超越拡大で、超越基底のなぞが、ますます深くなりました(^^;
274:現代数学の系譜11 ガロア理論を読む
15/12/12 06:36:53.92 H8eM6+Di.net
>>254 関連
”具体的超越数は超越基底にできない”となると、そういう集合とルベーグ測度とは相性が悪いのではと思う
TAさんのご指摘までは、Q~(代数的数)→C(複素数)の超越基底でも、有限次の超越拡大と同じような具体的数の超越基底をイメージして考えていました
が、大きくQ~(代数的数)→C(複素数)の超越基底のイメージが崩れました
275:現代数学の系譜11 ガロア理論を読む
15/12/12 06:50:13.23 H8eM6+Di.net
Q(π) の代数的閉包を考えると、πに代数的従属な超越数はすべて含まれる。そういう数を、仮にπに同族の超越数と名付ける
そうすると、πというラベルで、同族の超越数の集合を考えることができる
>>255の3)の((予想)問題T1)は、Q(π) の代数的閉包(それは実は、Q~(π)→代数閉包Q~(π)~だと思うのですが)は、Q(π) ⊂Q~(π)⊂Q~(π)~で、これが真の包含関係
だから、当然超越拡大として、加算無限次の超越拡大と考えました
いやはや、むずいです(^^;
276:132人目の素数さん
15/12/12 07:04:28.70 6WixoFth.net
運営乙
277:現代数学の系譜11 ガロア理論を読む
15/12/12 08:06:14.02 H8eM6+Di.net
>>236 ここに戻る
おっちゃんかな?
>>集合{s1,s2,s3・・・}を定める。これが私の超越基底Sの定義
>が間違っている。card(S)=c である以上、こういう記述は出来ない。
当然、超限帰納法を念頭に書いたのだが、ご指摘のように適切ではない
特に、学生はやめた方が良い。「分かってない!」と思われるおそれがあるから。試験の採点では普通抗弁の機会がないし
が、厳密に書けば、下記のように、”任意の整列集合に対して”「選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して」適用できる
だから、”card(S)=c”では帰納法は適用できないが超限帰納法は適用可能だ。むしろ問題は次だ
>>254に示した「Q~(代数的数)→C(複素数)拡大における超越基底の具体的超越数不可定理」からすると、”この超越基底は整列集合ではない”(問題T4)という予想が成り立つ
URLリンク(ja.wikipedia.org)
超限帰納法
上記の形で自然数について定式化された数学的帰納法は、任意の整列集合に対して次のように一般化することができる。
この一般化を超限帰納法 (ちょうげんきのうほう、英: transfinite induction)という。
任意濃度の集合は選択公理と同値な整列可能定理により整列順序を持つとすることができるので、選択公理を含む公理系であれば超限帰納法は任意濃度の集合に対して成立すると主張できる。
超限帰納法
(A , ?) を整列集合とし、P(x) を A の元 x に関する命題とする。 A は整列集合であるから "?" について最小元を持つ。
これを 、a0 とする。もし次の2つの条件が成立するならば、任意の x ∈ A について P (x) が成り立つ。
(引用おわり)
278:現代数学の系譜11 ガロア理論を読む
15/12/12 08:38:25.82 H8eM6+Di.net
>>236 つづき
>>いまの現代数学の到達レベルが、Hamel 基底も超越基底も、同じ
>という解釈も間違っている。
ご指摘の点は、当たっている
これについては、>>255だな
つまり、”C(複素数)は、代数閉体であることが陰に潜んでいる。これを意識する必要がある”と
Hamel 基底も超越基底も、いまの現代数学の到達レベルでは、具体的にこれを構成することができない
超越基底は、さらに”具体的超越数は超越基底にできない”>>254
Hamel 基底は、どうなのでしょう?
279:132人目の素数さん
15/12/12 09:18:29.89 F1RsZ/gB.net
>>253-254に関して
確認だが、超越基底という単語をスレ主は通常とは異なる定義で使っているよね?
>>224
> 4.これを繰り返し、Q~(s1,s2・・・)=Cとなるように、集合{s1,s2・・・}を定める。これが私の超越基底Sの定義
これを超越基底と呼ぶのはやめてほしい。"純超越基底"と呼ぶべきだ。
超越拡大が純超越的になるとは限らないから、いつでも純超越基底が取れるとは限らない。
特にR/Qは純超越的ではない。R/Q~が純超越的かどうかは分からない(非可算個ある超越数の代数的独立性を(俺が)知らないから)
280:132人目の素数さん
15/12/12 09:20:29.76 2UR4dFp8.net
コピペ馬鹿の電波に注意
281:263
15/12/12 09:20:53.12 F1RsZ/gB.net
>>263についてRをCに変えても俺の言っていることは変わらない。念のため。
282:263
15/12/12 11:09:14.12 F1RsZ/gB.net
>>255
3.は分かりづらいな・・。
> 3)では、Q~(π)→代数閉包Q~(π)~への拡大とは何か? Q~(π)→Q~(π)~は、当然超越拡大として、加算無限次の超越拡大と考えられる((予想)問題T1)
『Q~(π)→Q~(π)~は加算無限次の超越拡大』 というのは明らかにおかしい。
L~はLの代数拡大体の意味だよね。であるなら拡大Q~(π)~/Q~(π)は当然代数的で超越次数は0だよ。
283:263
15/12/12 11:18:06.52 F1RsZ/gB.net
>>266
>拡大Q~(π)~/Q~(π)は当然代数的で超越次数は0だよ。
補足しておくと、このとき当然Q~(π)~⊃Q~(π)であって、スレ主の意味では"取り残し"が存在することになる。
しかしこの取り残し(たとえば√π)を拾い上げて超越基底を構成することはできない。
なぜならこの体の拡大はそもそも超越次数=0だからだ。
任意のQ~(π)~\Q~(π)の元はQ~(π)上代数的従属だからと言ってもよい。
284:現代数学の系譜11 ガロア理論を読む
15/12/12 12:41:24.51 H8eM6+Di.net
>>263-267
TAさん、どうも。スレ主です。
1.当面>>224は忘れて下さい。
2.超越基底の定義について>>263で、>>253の有限次超越拡大の場合には一致しているということで良いですか?
つまり、Q(√2,π,√π)の場合の超越基底は、√πであってπである。(√πとπは、代数的に従属だが、√πが選ばれるべき)
言い換えれば、超越基底はQ(√2,π,√π)を表現できるように選ばれるべき。
有限次超越拡大にあっては、超越基底を選択して、それで拡大体を表現したときに、取り残しがあってはいけない。
そして、超越基底は実質一意に定まる。それが”基底”と呼ばれるゆえんだと
3.有限次超越拡大の場合に合意できたとして、では無限次の超越拡大にどうか?
私は、やはり超越基底を選択して、それで拡大体を表現したときに、取り残しがあってはいけないと考えます。
>>239に書いたように、もし取り残しが代数的に独立なら、Sに加えれば良い。代数的に従属な元であれば、超越基底を選択し直す>>243
そして、超越基底は実質一意に定まるべきと。それが”基底”と呼ばれるゆえんだと
285:現代数学の系譜11 ガロア理論を読む
15/12/12 12:43:00.78 H8eM6+Di.net
>>268 訂正
つまり、Q(√2,π,√π)の場合の超越基底は、√πであってπである。
↓
つまり、Q(√2,π,√π)の場合の超越基底は、√πであってπではない。
286:現代数学の系譜11 ガロア理論を読む
15/12/12 12:53:16.02 H8eM6+Di.net
>>268-269
TAさん、どうも。スレ主です。
>R/Q~が純超越的かどうかは分からない(非可算個ある超越数の代数的独立性を(俺が)知らないから)>>263
C/Q~で考えた方が良い。それでどうですか?
Q~⊂Cだ。Q~→Cは、体の拡大。超越拡大以外にありえない。超越数を順次添加して、体を拡大する。そうして、Q~からCへ達する。
その超越拡大を、超越基底という切り口でみたときに、超越基底は非加算無限あるよと
非加算無限あるというために、”Q~からCへ達する”は外せない
そう考えます。
287:現代数学の系譜11 ガロア理論を読む
15/12/12 13:10:42.57 H8eM6+Di.net
>>266-267
>『Q~(π)→Q~(π)~は加算無限次の超越拡大』 というのは明らかにおかしい。
>L~はLの代数拡大体の意味だよね。であるなら拡大Q~(π)~/Q~(π)は当然代数的で超越次数は0だよ。
ああ、そうかも知れませんね
>>259 で書いたように、Q(π) の代数的閉包は、当然考えられて、それをQ(π)~で表す。一方、Q~(π)の代数的閉包も考えられて、Q~(π)~と表す。
Q⊂Q(π) ⊂Q~(π)⊂Q(π)~=Q~(π)~
でしょう
Q~(π)→Q(π)~ (=Q~(π)~) 純代数的で、超越次数=0か。なるほど・・・
そうすると、Q→Q(π)~は、1次の超越拡大か
超越基底は、>>254のように”具体的超越数は超越基底にできない。”となりますかね?
288:現代数学の系譜11 ガロア理論を読む
15/12/12 13:14:31.89 H8eM6+Di.net
>>263
>確認だが、超越基底という単語をスレ主は通常とは異なる定義で使っているよね?
通常とは異なる定義で使っているつもりはないが、
議論がかみ合わないので
TAさんの、超越基底の定義を書いてください
289:現代数学の系譜11 ガロア理論を読む
15/12/12 15:09:06.87 H8eM6+Di.net
>>271 補足
Q⊂Q(π) ⊂Q~(π)⊂Q(π)~=Q~(π)~⊂C
体の拡大
Q→Q(π) →Q~(π)→Q(π)~=Q~(π)~→C
超越次数で
Q→Q(π)は、1
Q(π) →Q~(π)→Q(π)~=Q~(π)~は、それぞれ0次
Q~(π)~→Cは、非加算無限
そして、Q~(π)→Q(π)~が、>>255のQ~(代数的数)→C(複素数)のミニモデルとなっている
そういう理解で良いようだ
だから、この場合は、超越基底は、>>254のように”具体的超越数は超越基底にできない。”となりますね
290:132人目の素数さん
15/12/12 16:10:38.02 F1RsZ/gB.net
>>268
291:時間がないので2点だけコメントします。 > つまり、Q(√2,π,√π)の場合の超越基底は、√πであってπである。(√πとπは、代数的に従属だが、√πが選ばれるべき) 同意できない。超越拡大Q(√2,π,√π)/Qの超越基底は{π}でも{√π}でもよい。 なぜならQ(√2,π,√π)/Q(π)もQ(√2,π,√π)/Q(√π)も代数的だからだ。 言い換えれば、√2と√πはQ(π)係数多項式の根として生成でき、√2とπはQ(√π)係数多項式の根として生成できる。 よってどちらも超越基底だ。 この例を挙げたということは https://en.wikipedia.org/wiki/Field_extension をおそらく読んだのではないかと思う。 もう一度よく読んでほしい。 "(For example, consider the extension Q(x,√x)/Q"以下だ。 {x}も{√x}も超越基底だとはっきり書いてある。 > √πが選ばれるべき 体の演算の範囲でπが生成できるので{√π}の方が気持ちがよいのは認めるけれども、 超越基底の定義からすればどちらを選んでもよいのだ。 Q(√2,π,√π)/Qにおいて、体の演算の範囲でπおよび√πが生成できることを 超越基底の必要条件にするのは一般的な超越基底の定義ではない。スレ主独自の定義だ。 その独自定義を振りかざされると混乱するし、その定義を知らなければ間違っていると思われても仕方ない。 >>273 >そして、Q~(π)→Q(π)~が、>>255のQ~(代数的数)→C(複素数)のミニモデルとなっている ミニモデルというのはどういう意味? 拡大Q(π)~/Q~(π)は超越次数0で代数的。拡大C/Q~は超越次数無限。全然異なるものだが。 すまんが全部のコメントは読めていないので、上の指摘には俺の見落としがあるかもしれない。
292:現代数学の系譜11 ガロア理論を読む
15/12/12 18:37:53.88 H8eM6+Di.net
>>274
TAさん、どうも。スレ主です。
>Q(√2,π,√π)/Qにおいて、体の演算の範囲でπおよび√πが生成できることを
>超越基底の必要条件にするのは一般的な超越基底の定義ではない。スレ主独自の定義だ。
>その独自定義を振りかざされると混乱するし、その定義を知らなければ間違っていると思われても仕方ない。
そうでした。ご指摘の通りです。「Q(√2,π,√π)/Qにおいて、体の演算の範囲でπおよび√πが生成できること」を定義に入れていました。
URLリンク(en.wikipedia.org) は、読んでなかったが、よく分かりました
”In addition, if L/K is purely transcendental and S is a transcendence basis of the extension, it doesn't necessarily follow that L=K(S). ” とありますよね
私が間違ってました。お騒がせしました。 m(_ _)m
でも、それだと、超越基底は、あんまり美しい存在じゃないですね
なんとなく中途半端な感じがします
が、「Q(√2,π,√π)/Qにおいて、体の演算の範囲でπおよび√πが生成できること」まで要求すると、それはそれまた大変になることが、よく分かりました(^^;
293:現代数学の系譜11 ガロア理論を読む
15/12/12 20:15:28.70 H8eM6+Di.net
>>275
分かりました(^^;
"L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。"
URLリンク(ja.wikipedia.org)
超越次数(ちょうえつじすう、英: transcendence degree)は抽象代数学において、体の拡大 L /K の「大きさ」のある種のかなり粗いはかり方である。
きちんと言えば、K 上代数的に独立な L の部分集合の最も大きい濃度として定義される。
L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。
すべての体拡大は超越基底をもち、すべての超越基底は同じ濃度をもつことを証明できる。この濃度は拡大の超越次数に等しく、trdegK L や trans. degK L, trdeg(L /K) などと表記される。
URLリンク(en.wikipedia.org)
In abstract algebra, the transcendence degree of a field extension L /K is a certain rather coarse measure of the "size" of the extension.
Specifically, it is defined as the largest cardinality of an algebraically independent subset of L over K.
A subset S of L is a transcendence basis of L /K if it is algebraically independent over K and if furthermore L is an algebraic extension of the field K(S) (the field obtained by adjoining the elements of S to K).
One can show that every field extension has a transcendence basis, and that all transcendence bases have the s
294:ame cardinality; this cardinality is equal to the transcendence degree of the extension and is denoted trdegK L or trdeg(L /K).
295:現代数学の系譜11 ガロア理論を読む
15/12/12 20:29:47.57 H8eM6+Di.net
>>276
ようやく分かりました(^^;
"L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。"
「L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である」だから
Q(√2, π)の代数拡大から代数閉包までを考え、Q(√2, √π)の代数拡大から代数閉包までを考えると、両者の代数閉包は一致するってことですね
で、Q→Cにおける超越基底Sは、Q(S)を代数拡大してC(代数閉体)になるようにSを取るべしと
このとき、上記同様に、基底として、πをとっても、√πをとっても、同じ
296:現代数学の系譜11 ガロア理論を読む
15/12/12 20:40:48.28 H8eM6+Di.net
>>277
超越基底Sを使って、Q→Cを実現する、いや実現しなければならない
そこまで一緒だったんだけど
"L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。"
という立場は、 K(S)の後にさらに代数拡大をして、L が得られれば良いと
対して、私は、Sの添加だけで、Lが得られるように考えていた
そう考えたことは、無駄では無かったが、超越基底の定義としては、まったく「Well Defined」では無かったですね(^^;
297:現代数学の系譜11 ガロア理論を読む
15/12/12 20:43:58.80 H8eM6+Di.net
すっきりしました
TAさん、ありがとうございました(^^;
298:132人目の素数さん
15/12/12 20:55:03.27 5Y8yaR7r.net
スレ主さんは環上の加群については詳しい?
299:現代数学の系譜11 ガロア理論を読む
15/12/12 21:13:48.33 H8eM6+Di.net
詳しくないです
が、なにかあれば書いてみて
ここは、私だけでなく、メンターさん、TAさん、おっちゃんなど、タレントぞろいだから(^^;
300:現代数学の系譜11 ガロア理論を読む
15/12/13 06:11:13.59 +cm1d/we.net
>>275-279
せっかくなので、まとめておきましょう
1.(超越基底の定義) URLリンク(ja.wikipedia.org)
"L の部分集合 S は、次のときに L /K の超越基底(transcendence basis)であると言う。
S は K 上代数的に独立で、さらに L が体 K(S)(K に S の元を添加して得られる体)の代数拡大である。"
2.体の拡大Q→Cにおける超越基底Sとは
Q→Q(S) →Q(S)~=C (Q(S)は、Qに超越基底Sを添加した拡大体。Q(S)~は、Q(S)の代数的閉包)
3.超越基底S選択の自由度
Q→Q(π)→Q(π)~を考える。この場合、超越基底としてπを選択したが、√πでも、Q(π)~=Q(√π)~となる。同様に、πと代数従属な数であれば、同じ代数閉包を得る。
だから、上記2項における超越基底Sの要素の選択には、代数従属の分だけの自由度がある
(超越基底Tの代数従属による商集合を考えたものが、超越基底Sかな)
4.超越基底Sの可測、不可測
超越基底Tの代数従属による商集合と考えると、代表元の取り方には、大きな自由度がある
以前、>>108で示したように、(実数の場合だが)任意の微小な開区間から代表元を選ぶことができる(複素数なら微小開集合)。だから、可測なら零集合。
で、メンターさんが>>128で書いたように、ルベーグ非可測な代表元の選び方も可能だろう(∵自由度が大きい。証明は思いつかないが)
5.Q(S) の可測、不可測
1)直感的には、超越基底Sの可測、不可測を、Q(S) も引き継ぐような気がする。((予想)問題T5)
2)可測の場合のQ(S)は? 零集合か
>>128(メンターさん)では、”定理4 RのQ上の超越基底Sに対して、「Q(S)はルベーグ非可測」「Q(S)はゼロ集合」「 Q(S)=R 」のいずれかが成り立つ。”だったが
上記の(超越基底の定義)では、「 Q(S)=R 」は排除できる。「Q(S)はゼロ集合」は、直感的には、あり得る気がする。証明はおもいつかないが
これは、>>198のTAさんの、ハメル基底Hを経由してシュタインハウスの定理を使う筋が、使えないかなという気もする、今日この頃(^^;
大分迷走しましたが、結構すっきりしましたです。はい、では
301:現代数学の系譜11 ガロア理論を読む
15/12/13 06:57:24.22 +cm1d/we.net
>>262 訂正します
>Hamel 基底も超越基底も、いまの現代数学の到達レベルでは、具体的にこれを構成することができない
自分で書いておきながら・・・>>224
”詳しくは、>>215の公理的集合論 特別企画 これから学ぶ人のために 渕野 数学,Vol.65, No.4 (2013), 411--420. のHamel 基底の構成などを参照してもらえればと思います”
URLリンク(fuchino.ddo.jp)
302: 「超限帰納法を用いると, Hamel基底は,次のような“構成的” なやり方により作ることができる」P3*) 「上のようにして構成したHamel 基底を用いることで,(Zorn の補題を用いて得られる) Hamel 基底の存在の主張以上の興味深い事実が示せることを,次の節で見ることにする.」P4 とあるので、Hamel基底も”“構成的” なやり方により作ることができる”です。 超越基底については、>>282にまとめました。 *)ちなみに、下記もあります 「6 巨大な巨大基数の存在下でのHamel 基底 前の節の最後で引用した定理を第3節の終りで述べたことと組み合わせると,次がわかる. 定理6 (ZFC + SCC) L(R) の要素となっているような,Q 上のR のHamel 基底は存在しない.特 に,射影的なHamel 基底は存在しない.」P8
303:現代数学の系譜11 ガロア理論を読む
15/12/13 09:22:21.13 +cm1d/we.net
>>282 訂正
(超越基底Tの代数従属による商集合を考えたものが、超越基底Sかな)
↓
(超越数の集合Tの代数従属による商集合を考えたものが、超越基底Sかな)
超越基底Tの代数従属による商集合と考えると、代表元の取り方には、大きな自由度がある
↓
超越数の集合Tの代数従属による商集合と考えると、代表元の取り方には、大きな自由度がある
304:132人目の素数さん
15/12/13 10:54:30.97 3ayzk+I2.net
スレ主さんって数学系の大学院受けるならどのへんなら受かりそう?
東大もいける?
305:132人目の素数さん
15/12/13 11:27:15.83 QDOeid6/.net
スレ主じゃ学部1年を留年でしょ
だって線型・解析の基礎ができてないもん
306:132人目の素数さん
15/12/13 16:41:54.91 dhlaZUdG.net
通し用の「よいこのけいさんれんしゅうもんだい」もクリアできないだろうしな
307:132人目の素数さん
15/12/14 15:43:42.13 x1h8kR3n.net
ポンコツ頭のおっちゃんです。色々と議論しているみたいですな。
それにしても、疲れた。パソコン見る暇って意外に減るわな。スレ主に注文な。
来週は、このスレの方法(システム)にピッタリの話題で行こう。
半線形の熱伝導方程式とか、非線形PDE挙げてほしい。構想大局、着手小局。
非線形のシュレーディンガー方程式とか、盛り沢山あるみたいで、各方程式に
物理的由来や工学的由来などがあるそうだ。そのあたり知りたいので、よろしく。
308:132人目の素数さん
15/12/15 00:33:59.62 LHIZfIAE.net
運営乙
309:132人目の素数さん
15/12/16 21:42:09.30 C0T/Ab7s.net
数学をつまらなくするバカの集まるすれです。
310:132人目の素数さん
15/12/17 06:21:52.01 UWYX6A+A.net
運営乙
311:132人目の素数さん
15/12/18 12:29:50.76 4stNIOWi.net
あんたらは、コツコツ
高校数学、線形代数からやり直さんと
数学はわかる様にならんとですよ
312:132人目の素数さん
15/12/18 13:51:57.87 C2v5ZbcX.net
>高校数学、線形代数からやり直さんと
あのな~、そもそも、逆は必ずしもいえないが、高校数学は、物理が出来れば大半は出来る。
xy座標平面、(幾何)ベクトルや行列、三角関数、指数関数、近似値、微積分…など、然り。
学習法は人により違い、一概に出来る数学上のアドバイスはない。
アドバイスをするとしたら、寺寛を読み基本的な物理もしろ、に尽きる。
高校数学「だけ」しても無意味なのだ。高校数学云々いうなら、このことに気付けよw
微分方程式をしていたら、計�
313:Zが面倒ではあるが、無理性はもう証明出来た。 やはり、構想大局、着手小局って長年いわれて来ただけのことはあるんだね。 スレ主、では来週(今週)は非線形PDEをよろしく。物理や工学に限らず、幾何とも関係あるそうだ。
314:132人目の素数さん
15/12/18 22:10:03.30 3Pr8wET5.net
ID:4stNIOWi はどんな数学を分ってるの?
315:現代数学の系譜11 ガロア理論を読む
15/12/19 13:09:10.54 VtRJxPeF.net
>>288>>293
おっちゃん、どうも。スレ主です。
>半線形の熱伝導方程式
>非線形のシュレーディンガー方程式とか、盛り沢山あるみたいで、各方程式に
それは、面白そうだし、いいと思う
非線形のシュレーディンガー方程式ね、昔ソリトンが話題になったときに読んだ記憶がある
半線形の熱伝導方程式はよく分かりません。普通の熱伝導方程式は、昔解いたことがある
具体的にはどんな話しが良いんだろうか?
316:現代数学の系譜11 ガロア理論を読む
15/12/19 13:21:07.41 VtRJxPeF.net
年内は、仕事が山積みだし、年賀状もまだだから
おそらく、あまり時間が取れません
本格的には、年明けかな
>>282の”5.Q(S) の可測、不可測”は、まだ考察を継続中なんだ
超越基底の定義は、あとで見ると、雪江代数3の冒頭にあったね(^^;
基本的なことしか書いていないし、わずか5ページしかないが・・・
URLリンク(www.amazon.co.jp)
代数学3 代数学のひろがり 単行本(ソフトカバー) ? 2011/3/16
雪江 明彦 (著)
雪江/明彦
1957年甲府市に生まれる。1980年東京大学理学部数学科を卒業。1986年ハーバード大学にてPh.D.を取得。
ブラウン大学、オクラホマ州立大学、プリンストン高等研究所、ゲッチンゲン大学、オクラホマ州立大学を経て、東北大学大学院理学研究科教授。専門は、幾何学的不変式論、解析的整数論(本データはこの書籍が刊行された当時に掲載されていたものです)
317:現代数学の系譜11 ガロア理論を読む
15/12/19 13:29:55.88 VtRJxPeF.net
>>296 つづき
渕野昌 2006 集合論から見た非可測集合、面白かった
URLリンク(kurt.scitec.kobe-u.ac.jp)
集合論から見た非可測集合
渕野昌(中部大学,fuchino@isc.chubu.ac.jp)
2006 年11 月13 日
東北大学大学院理学研究科数学専攻談話会での講演
318:現代数学の系譜11 ガロア理論を読む
15/12/19 13:32:43.79 VtRJxPeF.net
>>297 つづき
渕野昌 2006より
定理1 (Giuseppe Vitali, 1905 ? 明治38 年)→”系ルベーク非可測集合が存在する.
Vitali の定理に対するpossible reactions :
(A) 選択公理が悪い.Vitali の定理の証明では(X の構成に)選択公理が本質的に用いられている.選択公理がなければこんなことは起こらないのではないか?
(B) Translation invariance が悪い.こんな条件はいらないのではないか?
(C) Vitali の証明のX の構成は非構成的である.構成的に得られた集合はすべて可測なのではないか?
(D) 非可測集合が存在して何が悪い! 可測性の集合論的研究はむしろそういうものがあった方が面白くなるではないか!”
319:現代数学の系譜11 ガロア理論を読む
15/12/19 13:38:22.26 VtRJxPeF.net
>>298 つづき
渕野昌 2006より
”(A) 選択公理が悪い.選択公理がなければこんなことは起こらないのではないか?
定理4 (Mycielski, Swierczkowski, Mazur, Banach, Davis, 1964) ZF + AD のもとですべての実数の集合はルベーク可測になる.
AD : (Axiom of Determinacy 決定性公理)すべてのA μ NN に対して,I かII かのどちらかはG(A) の必勝法を持つ.
系. 決定性公理AD は選択公理と矛盾する.
定理5 (Hugh Woodin, 1985) (ZFC の成り立つ世界で)無限個のウディン基数が存在してその上に一つ可測基数が存在するときAD がL(R) で成立する.
L(R) : R から出発して,定義可能な集合をとる操作を超限回繰り返して得られる集合の作るクラス.L(R) ではZF とDC が成り立つ.
ウディン基数,可測基数:到達不可能基数よりはるかに“大きい” が集合論で考察する巨大基数の中では最大のものでないような基数決定性公理AD は選択公理のalternative と見るべきではい.
むしろ選択公理の成り立つ豊かな( つまり存在してもいいような巨大基数がすべて実際に存在するような)世界の内部世界L(R) で成り立つ原理ととらえるべきである.”
320:現代数学の系譜11 ガロア理論を読む
15/12/19 13:45:24.49 VtRJxPeF.net
>>299 つづき
渕野昌ワールド
「系. 決定性公理AD は選択公理と矛盾する.」のすぐ後で
「ウディン基数,可測基数:到達不可能基数よりはるかに“大きい” が集合論で考察する巨大基数の中では最大のものでないような基数決定性公理AD は選択公理のalternative と見るべきではい.
むしろ選択公理の成り立つ豊かな( つまり存在してもいいような巨大基数がすべて実際に存在するような)世界の内部世界L(R) で成り立つ原理ととらえるべきである.」
記述が矛盾しているようにも思うが
面白そうだね
321:132人目の素数さん
15/12/19 13:46:30.16 0n7yBQKn.net
行李なんて飾りです
バカにはそれがわからんのです
322:現代数学の系譜11 ガロア理論を読む
15/12/19 13:52:07.32 VtRJxPeF.net
>>299 つづき
>定理4 (Mycielski, Swierczkowski, Mazur, Banach, Davis, 1964) ZF + AD のもとですべての実数の集合はルベーク可測になる.
可測、不可測も、行李しだいか
323:現代数学の系譜11 ガロア理論を読む
15/12/19 14:25:49.23 VtRJxPeF.net
>>302 つづき
下記も面白かった
URLリンク(alg-d.com) URLリンク(alg-d.com)
Lebesgue非可測集合の存在 2011年10月12日更新
URLリンク(alg-d.com)
トップ > 数学 > 選択公理 > Lebesgue非可測集合の存在
324:132人目の素数さん
15/12/19 15:08:06.63 mrQ2Dop3.net
>>295
おっちゃんです。
>非線形のシュレーディンガー方程式ね、昔ソリトンが話題になったときに読んだ記憶がある
ソリトンからはじめるなら、水面波の挙動とかの物理現象あたりからいったらどうだ?
KdV方程式だけでも解法とか話題が広い。
>半線形の熱伝導方程式はよく分かりません。普通の熱伝導方程式は、昔解いたことがある
>具体的にはどんな話しが良いんだろうか?
非線形方程式だと解の存在性や一意性、解の発散(爆発)や挙動などが問題になって、
知る限りでは、それらを統合して扱う理論は余りない。
半線形の熱伝導方程式の例だと、例えば、ナビエ・ストークス方程式や曲面の方程式がある。
扱う手法としては、関数の変数をスカラー倍して、関数の大きさを変えて扱う方法や、実解析や調和解析の応用、
非線形関数解析的手法などがある。まあ、非線形関数解析は難しいから、最初は避けた方がいいわな。
取り敢えず、ナビエ・ストークス方程式や極小曲面の方程式あたりからはじめればいいんじゃない。
これでも非圧縮粘性流や圧縮粘性流とか、流体力学の話があるだろう。
325:現代数学の系譜11 ガロア理論を読む
15/12/19 15:25:52.68 VtRJxPeF.net
>>282
これもご参考。”J. Shipman showed in 2007 ”か。こんな定理が、2007年ですか?
URLリンク(en.wikipedia.org)
In abstract algebra, an algebraically closed field F contains a root for every non-constant polynomial in F[x], the ring of polynomials in the variable x with coefficients in F.
Polynomials of prime degree have roots
J. Shipman showed in 2007 that if every polynomial over F of prime degree has a root in F, then every non-constant polynomial has a root in F, thus F is algebraically closed.
Shipman, Joseph (2007), "Improving the Fundamental Theorem of Algebra", Mathematical Intelligencer 29 (4), pp. 9?14, doi:10.1007/BF02986170, ISSN 0343-6993
URLリンク(dx.doi.org)
URLリンク(mathoverflow.net)
25 edited Nov 7 '13 at 6:10
A recent and very important contribution to the literature o
326:n the fundamental theorem of algebra is Joe Shipman's article "Improving the Fundamental Theorem of Algebra," Math. Intelligencer 29 (2007), 9-14, doi:10.1007/BF02986170. Here is one of his results: A field with the property that every polynomial whose degree is a prime number has a root is algebraically closed. This result is sharp in the sense that if any prime is omitted then the conclusion is false. Shipman's paper should go a long way towards addressing Andrew L's question of whether there is a "purely algebraic proof" of the FTA. The above result of Shipman's shows that we can limit the topology/analysis to proving that every polynomial over C of prime degree has a root; the rest is pure algebra. If you wanted to try to limit the use of topology or analysis even further, then this part of the proof is where you should focus your attention.
327:現代数学の系譜11 ガロア理論を読む
15/12/19 16:06:26.30 VtRJxPeF.net
>>304
"半線形"か・・・、おっちゃん博識やね~(^^;
URLリンク(www.mech.kagoshima-u.ac.jp)
鹿児島大学理工学研究科機械工学専攻 中村祐三
応用数学II及び演習 2年後期
URLリンク(www.mech.kagoshima-u.ac.jp)
平成15年度、平成16年度(理学部 中島先生とご一緒)
5.偏微分方程式の構成
URLリンク(www.mech.kagoshima-u.ac.jp)
3.偏微分方程式の構成
”偏微分方程式がuとその偏導関数の一次式で表せないとき、非線形偏微分方程式という。
非線形偏微分方程式において、最高階の偏導関数の係数がそれよりも低い階数の偏導関数を含むとき、準線形と言われる。
特に、最高階の偏導関数の係数に未知変数が含まれないときには、半線形という。”
328:現代数学の系譜11 ガロア理論を読む
15/12/19 16:43:54.29 VtRJxPeF.net
>>306 つづき
ロシアの企業みたいだが・・・
URLリンク(blog.simmakers.com)
Quasilinear Heat Equation in Three Dimensions and Stefan Problem in Permafrost Soils in the Frame of Alternating Directions Finite Difference Scheme
Posted on: 15.07.2013
URLリンク(simmakers.com)
About Simmakers Ltd
Simmakers Ltd develops high-tech software and provides services in the field of computer simulation of physical and technological processes aimed at increasing economic efficiency and competitiveness of the business of our partners.
We have been developing science-intensive software since 2001. In this time, employees of the company have implemented projects in various fields including engineering, machinery construction, geology and the environment.
Simmakers Ltd is a resident of the Skolkovo Innovation Center.
URLリンク(blog.simmakers.com)
私達について
Simmakers株式会社スコルコボ革新センターの居住者である. 当社は、世界有数の研究機関と連携 - マサチューセッツ工科大学 (WITH) カリフォルニア大学, ロサンゼルス市 (カリフォルニア大学ロサンゼルス校).
私たちは、以来、科学集中的なソフトウェアを開発している 2001. 我々のチームは非常に熟練し数学者で構成されています, プログラマー, 研究エンジニア, 誰が主要な大学の研究室で自分のキャリアをスタートさせました.
で 2008 科学研究所に基づい≪技術的プロセスのコンピュータシミュレーションは≫と≪生態学における情報システムと技術≫Simmakers株式会社は設立されました. 今日, 同社は、ロシアではその代表者のオフィスを構えています (モスクワ), ベラルーシ (ミンスク) そして中国 (香港).
329:現代数学の系譜11 ガロア理論を読む
15/12/19 20:16:55.65 VtRJxPeF.net
>>307 つづき
[PDF]SKOLKOVO INNOVATION PROJECTS
URLリンク(sk.ru)
5 technical patent applications were submitted. Simmakers Ltd. 3D SIMULATION OF PHYSICAL PROCESSES. IN SOIL simmakers.
TEAM /. Dmitri Evlanov is responsible for organizational strategy, marketing, general management.
P126
ESSENCE OF INNOVATION /
Numerical methods with high degree
of parallelization and fast convergence
for nonlinear problems are developed.
Low computational error due to fine
meshing and large number of factors
considered in the mathematical model.
High presentational visualization
of simulation results.
330:現代数学の系譜11 ガロア理論を読む
15/12/19 20:42:19.68 VtRJxPeF.net
>>307-308
凍土の融解の熱伝導解析か? 確かに、融解とか凝固がからむと、問題が非線形になるかも・・・
しかし、Simmakers株式会社は、面白い会社だね
331:現代数学の系譜11 ガロア理論を読む
15/12/19 21:11:36.50 VtRJxPeF.net
>>302
「随伴関手の存在に関する定理から選択公理を導くことができる.」か。選択公理は、結構自然なのかな
URLリンク(alg-d.com)
圏論 2015年3月 7日更新
随伴関手の存在に関する定理から選択公理を導くことができる.
定理 次の命題は( ZF 上)同値.
1.選択公理
2.C, D を圏, F: C→D を関手とする.任意の d∈D に対して F から d への普遍射が存在するならば, F は右随伴を持つ.
3.C を余完備な圏, D を圏, F: C→D を余連続な関手とする. F はsolution set conditionを満たすとする.このとき F は右随伴を持つ.(General Adjoint Functor Theorem)
4.C を余完備かつco-wellpoweredで,generatoring setを持つ圏, D を圏, F: C→D を余連続な関手とする.このとき F は右随伴を持つ.(Special Adjoint Functor Theorem)
5.C, D, U を圏, F: C→D , E: C→U を関手として,各 d∈D に対して余極限 colim(F↓d→C→U) が存在するとする.このとき F に沿った E の左Kan拡張 F†E が存在し, F†E(d) ? colim(F↓d→C→U) である.
332:現代数学の系譜11 ガロア理論を読む
15/12/19 21:12:16.54 VtRJxPeF.net
>>310
ついで
URLリンク(alg-d.com)
圏論
第0章 圏論入門
圏論とは何か PDF版
圏論の入門的な。圏の定義と例を使って,圏論がどういうものなのかを紹介します。
普遍性 PDF版
圏論で重要な考え方の一つ「普遍性」について説明します。
第1章 圏論
自然変換・関手圏 PDF版
米田の補題 PDF版
コンマ圏 PDF版
極限 PDF版
随伴関手 PDF版
第2章 全ての概念はKan拡張である
Kan拡張 PDF版
随伴関手定理 PDF版
エンド PDF版
余米田の補題 PDF版
profunctorとココンマ圏 PDF版
豊穣圏 PDF版
第3章 高次元圏
2圏 PDF版
モデル圏 PDF版
333:現代数学の系譜11 ガロア理論を読む
15/12/19 21:24:54.15 VtRJxPeF.net
>>306
こんなのも
URLリンク(language-and-engineering.hatenablog.jp)
334:/PartialDifferentialEquationsPDFLectureNotes 偏微分方程式の講義ノートPDF。解き方や分類の基礎を学ぶ入門用の参考書 http://language-and-engineering.hatenablog.jp/entry/20140620/PDFLectureNotesOnUniversity 大学の理工系の講義ノートPDFまとめ (数学・物理・情報・工学) ついでに http://language-and-engineering.hatenablog.jp/entry/20140705/MathExamProblemForHighSchoolStudents 大学入試の数学で,有名な名問や難問のまとめ(解答つき)。難易度は「標準」から「史上最大」まで
335:現代数学の系譜11 ガロア理論を読む
15/12/20 10:15:48.19 saIApgKR.net
>>310
>選択公理は、結構自然なのかな
下記ご参考。面白いです(^^;
URLリンク(alg-d.com)
algebraic dialy
選択公理は直感に反さないだろいい加減にしろ!
2013年5月12日
336:132人目の素数さん
15/12/20 11:37:12.83 d5oIGObW.net
数学セミナー2015年11月号の記事『箱入り無数目』より要略
---------
[問題]
可算無限個の閉じた箱がある。1つの箱には1つの実数が入っている。
貴方は1つの箱を選び、それ以外の全ての箱を開いて中の数字を見ることができる。
貴方は選んだ箱の中の数字を当てることができるか?
答えは『(選択公理を用いて)できる』。
しかし直観的には不可能だ。各々の箱の数字は独立なのだから、
ある1つの箱について他の箱から意味のある情報が得られる訳がない。
この戦略は選択公理を用い、非可測集合を経由する。それがイケナイと片付けるのは面白くない。
筆者には確率変数の無限族の独立性の微妙さを物語っているように思える。
---------
337:132人目の素数さん
15/12/20 11:55:20.93 d5oIGObW.net
>>314
>答えは『(選択公理を用いて)できる』。
正確には『確率1-εでできる』でした。
338:132人目の素数さん
15/12/20 13:50:22.65 agGjW+v9.net
ツッコミどころが多過ぎて
339:132人目の素数さん
15/12/20 14:03:53.21 NRzRXMUL.net
運営乙( ^ω^ )
340:現代数学の系譜11 ガロア理論を読む
15/12/20 14:05:10.43 saIApgKR.net
>>314-316
どうも。スレ主です。
選択公理は詳しくないが
>>310の圏論「随伴関手の存在に関する定理から選択公理を導くことができる.」や
>>313 「選択公理は直感に反さないだろいい加減にしろ!」を見ると
選択公理は、有限の直感を、ある範囲で無限でも可能だとする公理なのかなと
つまり、x億円ジャンボ宝くじ
有限個の閉じた箱がある。1つの箱には当たりくじが入っている。他は外れ
貴方は1つの箱を選び、それ以外の全ての箱を開いて中のくじを見ることができる。
貴方は選んだ箱の中のくじの当否を当てることができるか?
答えはできる
が、ゼロ回答あり(つまり、全部外れもありで、そのときは次回へ持ち越し)とすれば?
数学セミの著者のいうとおり、当てられない
つまりは、有限無限の問題にあらず
似た話が>>313にある
341:132人目の素数さん
15/12/20 15:31:07.52 Wndo2eRm.net
やあ、おっちゃんです。非線形PDEの話はスレタイにそぐわないか。
以前、ζ(3)の無理数度の話したろ。
不等式の評価の方法が正しければ、その無理数度は2になる。
同じく、不等式の評価が正しければ、ζ(2k) kは正整数 の無理数度は2になる。
ここに方針だけなら書いてもいい。ノートに鉛筆でいいなら、手書きで送る。
他にも、ζ(2k+1) kは正整数 の無理性や超越性の証明は出来たが、
超越性の方は確実に正しいという確信はまだ持てない、
というか、確信を失った。もしかしたら、間違っている可能性がある。
任意のζ(2k+1)が無理数なることは間違いない。取り敢えず、π±e も同様。
342:132人目の素数さん
15/12/20 15:43:23.70 rxBWLg/B.net
>>293
経験上、こういうことを言う学生、趣味人のほとんどは、
基礎がグラグラで破茶滅茶な論証を「証明」と言い張る人達である。
基本的学習を嫌ってカッコイイ「プロの数学」に憧れる人種。
343:132人目の素数さん
15/12/20 16:03:00.26 Wndo2eRm.net
>>320
はっきりいって、(物理も含む非線形)PDE効果だよ。
物理や(非線形)PDEの量的計算は凄まじい。それに比べ、数論の量的計算はかなり簡単。
そもそも、高校数学自体が、或る種の物理的要素がある訳で、
高校数学と物理はつながっている。高校のとき、生物と化け学を履修して高校数学をしてみろw
高校物理を履修して高校数学したときより、高校数学の学習効率が悪くなる。
そして、高校物理を履修するときは、必ずといっていい程、授業で数学もする。
344:132人目の素数さん
15/12/20 16:13:42.12 Wndo2eRm.net
>>320
そういえば、
>カッコイイ「プロの数学」
といういい回しは、一種の文学的表現だろうが、何をいいたいんだ?
私がプロの数学を「カッコイイ」と思っているという推測か?
もしそうなら、プロの数学が「カッコイイ」と思ったことはないに近いけどな。
345:132人目の素数さん
15/12/20 16:17:07.22 H36RmvcL.net
現に爺とスレ主は「文学的修辞」を推論の根拠や
論証の代わりにしとるがなw
346:132人目の素数さん
15/12/20 16:34:10.62 agGjW+v9.net
>基礎がグラグラで破茶滅茶な論証を「証明」と言い張る人達である。
>基本的学習を嫌ってカッコイイ「プロの数学」に憧れる人種。
まんまスレ主じゃんw
347:132人目の素数さん
15/12/20 16:38:21.07 d5oIGObW.net
>>318
>つまりは、有限無限の問題にあらず
>>318に書かれた当たり外れクジの例と、実数が収められた可算無限の箱の例は全然違うものだけど。
スレ主が>>318で言いたいことがよく分からなかった。
説明を加えてくれるとうれしい。
ちなみに>>314の記事を書いたのはケンブリッジ大フェローの時枝正。
彼は箱の中の数字を当てられるとする結論を否定しているわけではない。
選択公理を否定しているわけでもない。
無限を捉えるのは難しいね~と言っているだけだ(たぶん)。
348:132人目の素数さん
15/12/20 16:44:04.88 d5oIGObW.net
>>316
>ツッコミどころが多過ぎて
突っ込んでみろ。外野から野次ってないで数学の議論をしてみろ。
349:現代数学の系譜11 ガロア理論を読む
15/12/20 17:15:50.06 saIApgKR.net
>>314-318>>325
どうも。スレ主です。
>>314の記事ね、>>318を書いたときは読んでなかったが、読んだ
ケンブリッジ大フェローの時枝正ね、この記事は、随筆だよね、気楽な。時枝正先生が何を言いたかったのか
いまいち正確に理解できるほど、この話には詳しくない
が、選択公理に力点があるのではなく、「確立変数の無限族」に力点があると読んだ
で、>>314は色がついた。 ID:d5oIGObW さんのね。時枝正先生随筆を引用した
”答えは『(選択公理を用いて)できる』。しかし直観的には不可能だ。各々の箱の数字は独立なのだから”と書いた瞬間に、力点は選択公理に移っている
そして、時枝正先生の主張は、確率99%の戦略があるという。つまりは、あくまで、立脚点は「確立変数の無限族」だ
対して、私のレス>>318は、選択公理に力点を置いて書いた
>無限を捉えるのは難しいね~と言っているだけだ(たぶん)。
いや、繰り返すが「確立変数の無限族」に力点があると読んだよ。では(^^;
URLリンク(www.nippyo.co.jp)
時枝 正(ときえだ ただし)
著者経歴
1968年東京生まれ。古典語を専攻の後、数学に転向、1996年ブリンストン大学よりPh.D。
現在ケンブリッジ大学トリニティー・ホールのフェロー。専門は流体力学、シンプレクティク幾何、おもちゃなど。
ケープタウンのAfrican Institute for Mathematical Sciencesを中心に発展途上国での活動も多い。(2011年11月現在)
350:現代数学の系譜11 ガロア理論を読む
15/12/20 17:18:06.01 saIApgKR.net
>>327 訂正 「確立変数の無限族」→「確率変数の無限族」
351:132人目の素数さん
15/12/20 17:27:01.70 agGjW+v9.net
---------
[問題]
可算無限個の閉じた箱がある。1つの箱には1つの実数が入っている。
貴方は1つの箱を選び、それ以外の全ての箱を開いて中の数字を見ることができる。
貴方は選んだ箱の中の数字を当てることができるか?
答えは『(選択公理を用いて)できる』。
---------
>1つの箱には
⇒それぞれの箱には だろ
>貴方は1つの箱を選び、それ以外の全ての箱を開いて中の数字を見ることができる。
⇒有限時間で無限個の箱を開けることはできねーよ。
�
352:�答えは『(選択公理を用いて)できる』。 ⇒選んだ箱に1が、他の箱に0が入っていた場合、どうやって当てるんだよ。 次に >1つの箱には ⇒それぞれの箱には とする。 >貴方は1つの箱を選び、それ以外の全ての箱を開いて中の数字を見ることができる。 ⇒選択公理の例え話とする。 >答えは『(選択公理を用いて)できる』。 ⇒全ての箱の中の実数は相異なっているとする。 それでもできない。箱が可算無限個で、実数は可算無限個じゃないから。 >正確には『確率1-εでできる』でした。 ⇒εって何だよwいきなり未定義語が出てきたぞw
353:132人目の素数さん
15/12/20 18:49:53.12 d5oIGObW.net
>>329
数学的な議論に的を絞らせてもらうが、次の点の理解は重要だから突っ込み返しておく。
> >正確には『確率1-εでできる』でした。
> ⇒εって何だよwいきなり未定義語が出てきたぞw
このεは時枝氏の記事でも未定義だ。
もし本当に説明が必要だというなら言ってくれ。
> >答えは『(選択公理を用いて)できる』。
> ⇒選んだ箱に1が、他の箱に0が入っていた場合、どうやって当てるんだよ。
指摘はごもっとも。それが人間の直観というものだ。
しかしそれでも選択公理を仮定すれば確率1-εで当てられる、と言っている。
そういう不思議な結論が導かれる、という記事なんだよ。
> >答えは『(選択公理を用いて)できる』。
> ⇒全ての箱の中の実数は相異なっているとする。
>
> それでもできない。箱が可算無限個で、実数は可算無限個じゃないから。
これはどういう突っ込みだ?すまんが理解できない。
箱の中の実数に制限はない。すべて同じかもしれないし、相異なるかもしれない。
それでもある戦略を採れば最後の箱の中身は確率1-εで当てられる。
引き続き突っ込みがあればどうぞ。
354:132人目の素数さん
15/12/20 19:15:19.29 agGjW+v9.net
εなるものの正体が不明なら、「確率1-εで当てられる」という表明には何の意味も無いから
突っ込む価値すら無い
355:132人目の素数さん
15/12/20 19:16:24.99 d5oIGObW.net
>>327
スレ主、レスありがとう。
さっそく記事を読んでくれたようで。
> 時枝正先生が何を言いたかったのか
> いまいち正確に理解できるほど、この話には詳しくない
> 選択公理に力点があるのではなく、「確立変数の無限族」に力点があると読んだ
スレ主の言うとおり、記事の中で選択公理と非可測集合を経由したことについて注意があるが、
『ふしぎな戦略に対する反省』としてより力点が置かれているのは無限族の独立性についてだ。
直観を外す原因が選択公理(と非可測集合)にあるのか、無限族の独立性の扱い方にあるのか、
はたまたその両方にあるのか、正直言って俺には分からない。
選択公理の話題になったのでそれに関連する面白い記事を紹介したまでだ。
356:132人目の素数さん
15/12/20 19:19:28.98 agGjW+v9.net
ε=1なら確率0で当てられる、つまり絶対に当てられない
ε次第で意味が全く変わるんだよ、お馬鹿さん
357:132人目の素数さん
15/12/20 19:19:36.56 d5oIGObW.net
>>331
> εなるものの正体が不明なら、「確率1-εで当てられる」という表明には何の意味も無いから
そうか。日本評論社か時枝氏に文句を言わないといけないな。
あるいは数学セミナーがお前のような奴を読者対象にしていないかだな。
358:132人目の素数さん
15/12/20 19:25:09.85 ek8eSZ/v.net
スレ主が正しく記事の要旨を伝えられてないというオチを予想
359:132人目の素数さん
15/12/20 19:28:27.90 agGjW+v9.net
>>334
そうやってすぐに権威に縋ろうとするお前は、新興宗教の信者と同レベル
数学の議論してみろというお前の言葉をそっくりお返しします
360:132人目の素数さん
15/12/20 19:32:03.26 d5oIGObW.net
>>331>>334>>336
本当にεの意味を取れていないなら悪かった。εは任意に小さい正の実数だ。
> 数学の議論してみろというお前の言葉をそっくりお返しします
ではお望みどおり数学の議論をしようか。>>330に対するレスをよろしく。
361:132人目の素数さん
15/12/20 19:40:43.46 agGjW+v9.net
任意に小さい正の実数って何だよ?
お前は数学的に定義できるのか?
362:現代数学の系譜11 ガロア理論を読む
15/12/20 19:50:41.25 saIApgKR.net
>>324
どうも。スレ主です。
>>基礎がグラグラで破茶滅茶な論証を「証明」と言い張る人達である。
>>基本的学習を嫌ってカッコイイ「プロの数学」に憧れる人種。
>まんまスレ主じゃんw
おれのことを褒めてくれてありがとう
「プロの数学」というか、物理でも例えば量子力学やれば、自然にいわゆる高等数学なるものが出る。ディラックのδ関数。数学では超関数ですか?
ヒルベルト空間も出てくる。まあ、物理の最先端は、結構現代数学を超えた地平にあるんじゃないかな? どちらかと言えば、おれはそっちの方に憧れる。ちまちました「証明さま」より「自分の物理的直感を駆使した自分の
363:理論構築」の方にね おれは、数学で飯を食う立場じゃない。ただ、数学は使うし、高等数学は使えた方が、良い仕事ができる。例えば、具体的な有限群論は道具だよ ところで、職場の後輩で、物理から工学系に変わったやつが来た。学部が物理で、修士が工学だ。時枝 正(ときえだ ただし)先生は、逆に古典語を専攻の後、数学に転向かよ>>327。すごいね。まあ、才能とそういう時代だったのかね? 学部の数学科で食えるのか? おれは、憧れでもなんでも良い。けど、学部の数学科の人は、”憧れ”じゃ済まないんだろ?真剣に転向も考えた方が良いかもな (^^; ガロアの原論文には憧れがあったよ。それは確かだし、読んだ。読み終わった。が、現代数学にはそれほど強い憧れない。道具だ。使えるのが一番。偏微分方程式も、数値解析で解ければ、まあ解析解なしでも我慢だ。解析解は美しけどね 現代数学は、おれに取っては教養です。物理とか先端の理論を学ぶために。ちまちました「証明さま」より「自分の物理的工学的直感に乗ってくればそれで良し」です。なんせ、根は工学系ですから(^^; が、数学科はそれでは許されないんだろうね・・・きっと。しかし、直感の筋は通しているつもりだ。直感が鈍って間違った結論が出るのは困るから。だから、証明もそれほど外してないと思うよ(^^;
364:132人目の素数さん
15/12/20 20:34:10.63 cHMye0+D.net
雪江代数1買いました
このスレの仲間入りしていいですか?
365:132人目の素数さん
15/12/20 20:53:07.89 agGjW+v9.net
>>340
アホになるから止めた方がいい
366:132人目の素数さん
15/12/20 21:13:48.07 d5oIGObW.net
>>339
> しかし、直感の筋は通しているつもりだ。直感が鈍って間違った結論が出るのは困るから。だから、証明もそれほど外してないと思うよ(^^;
無限が絡むと直感が外れることが多いんだよな。
>>314が良い例だが、こういう例はいくらでもあるよね。
367:342
15/12/20 21:16:14.83 d5oIGObW.net
>>342はスレ主に対する批判ではなく、一般的な話な。
368:現代数学の系譜11 ガロア理論を読む
15/12/21 20:51:43.21 qjcQyNUZ.net
どうも。スレ主です。今夜は変則です。
>>341>>324
「人は鏡」(下記)という言葉を知っている人もいるだろう
本来の言葉の使い方とは違うと思うが、>>341>>324にID:agGjW+vくんの劣等感の影が見えると思うのは、私だけだろうか?
ID:agGjW+vくんは、思うに自分より下を探したいんだろうね(^^;
ということは、ID:agGjW+vくんの成績は押して知るべし(身近に下が不在なんだ)
かつ、自分の将来に不安を感じていると見た
数学科に迷い込んだ君。成績も伸びない。何かを求めてこのスレに・・、それは、おそらくは自分より下を探して、安心を得たいということか・・、その心理の反映の発言と見たね(^^;
かわいそうだね・・
まあ、下記のURLでも参考にしてくれたまえ
URLリンク(www.rinri-jpn.or.jp)
「万人幸福の栞17カ条」
人は鏡、万象はわが師 【万象我師】
他人は自分の心やふるまいを反映する鏡なのだ。
369:現代数学の系譜11 ガロア理論を読む
15/12/21 21:02:30.96 qjcQyNUZ.net
>>340
どうも。スレ主です。
雪江代数1ね。そんなにバイブル視するほどでもないと思ったけど
まあ、そんなことより、数ある代数学の本で1冊えらんだんだから、まあ読んでみなさいよ
「買いました」という言葉に、自学自習の臭いがする
まあ、もっと易しい本からとも思うが
自学自習なら、下記”わんこら式”を見ておいてね
URLリンク(wankora.blog31.fc2.com)
2、無理やりページを進める
これはよくオレが失敗しま�
370:オた。 問題を飛ばさずに絶対解けるまで考えるって決めてた。 それで何日も一つの問題を考えてしまった。 夜も寝られず数学の夢にうなされた。 この先、どんどん勉強を進めていけば、後から見れば簡単に解けたり当たり前のことように感じることもあります。 一つの問題で止まれば、わかる問題があってもそこまで進めません。 ここで止まらないでください 考えすぎない!勇気を持って問題を飛ばす! これを絶対に忘れないでください。 そして、オレと同じ過ちを繰り返さないでください。
371:現代数学の系譜11 ガロア理論を読む
15/12/21 21:05:58.11 qjcQyNUZ.net
>>342-343
どうも。スレ主です。
勉強を進めれば、正しい理解に基づく直感が鍛えられると思うんだ
むかしの人は、地球が丸いと思わず、天動説を信じた
同じことだよ
372:現代数学の系譜11 ガロア理論を読む
15/12/21 21:07:40.40 qjcQyNUZ.net
直感を捨ててはいけない
勉強して正しい直感を磨く
これが正しいやり方だと思うよ
373:現代数学の系譜11 ガロア理論を読む
15/12/21 21:23:34.59 qjcQyNUZ.net
>>335 私を呼んだかな?(^^;
>>330>>334
>このεは時枝氏の記事でも未定義だ。
>もし本当に説明が必要だというなら言ってくれ。
いま手元に数セミがないんだが、記憶で書かせて貰うと
確率1-εの前に、実数を100列に並べるという話があったろう? そして、100列から、確率99%(100-1)という繋がりだ
つまり、前段の話はε=1/100の具体例
だから、1000列並べれば、ε=1/1000だと読んだけど
実数は無限だから、列数はいくらでも増やせるよと、時枝先生は言っているように思った
(但し、”100列から、確率99%(100-1)”の確率変数の族を使うロジックが難しくて、短時間では理解できなかったね(^^;)
374:現代数学の系譜11 ガロア理論を読む
15/12/21 21:37:21.40 qjcQyNUZ.net
>>345
矛盾するようだが、とことん考え抜くという勉強法もありだと思う
まあ、人によると思うけど
下記のプロ棋士の上達法なども、人によって違うみたいだ
が、ID:agGjW+vさんが、自学自習派なら、雪江代数1で挫折しそうだから、”わんこら式”をお薦めした
かつ、一冊にこだわらないことだ。本には誤植もあるからね・・(^^;
URLリンク(wants-info.com)
HOME学問・教育・教養将棋将棋の上達法!プロ棋士の語録から学ぶ強さの秘訣とは? 2015年10月25日
今回は、5人のプロ棋士達の語録を集め、
それぞれの語録の最後に「将棋上達への早道」として、
語録から分かる上達の秘訣を一言で表してみました。
375:現代数学の系譜11 ガロア理論を読む
15/12/21 21:40:24.88 qjcQyNUZ.net
>>349 訂正
ID:agGjW+vさんが、
↓
ID:cHMye0+Dさんが、
376:132人目の素数さん
15/12/21 21:56:52.85 dg12Pvrp.net
>>346-347
正論ですな。修行が足りないのはそのとおりだ。
しかし時枝氏も不思議と思うような話を直感的に納得できる日がいつくることやらと思ってしまうね。
まあがんばりましょう。
377:132人目の素数さん
15/12/21 22:04:35.50 LysZ3YDv.net
ここは隔離病棟と納得
古風に言うと癲狂院
378:132人目の素数さん
15/12/21 22:07:45.40 dg12Pvrp.net
>>344
スレ主は素晴らしいね。迷える者にカウンセリングまでして。
俺は>>337で腰を落ち着けて付き合おうと思ったんだが、次の>>338で早くもその気が失せてしまった。
379:132人目の素数さん
15/12/21 22:16:56.75 e26dcM6q.net
>>353
早く定義しろよ、逃げてないで
380:132人目の素数さん
15/12/21 22:32:13.36 e26dcM6q.net
>>353
自分で言ったことすら定義できない自分のアホさに失望してやる気が失せたんですね? わかります
381:現代数学の系譜11 ガロア理論を読む
15/12/21 22:33:23.28 qjcQyNUZ.net
>>352
おかしい
�
382:Qちゃんねるに出入りしていることからして なにをかいわん 2ちゃんねる数学板 何を求めて出入りする? 2ちゃんねる数学板すべてが、隔離じゃないのかね? もし、そうじゃないというなら、一つで良いから具体的スレ名を上げてみたまえ
383:現代数学の系譜11 ガロア理論を読む
15/12/21 22:42:18.90 qjcQyNUZ.net
>>354-355
定義定義か(^^;
劣等感が映し出されていると思うのはおれだけか? いつも言われているのか?
例の時枝先生の記事読んでないんだろ?
丸分かりだね
せめて読んでから言えよな
読めば、自分なりの解釈なり定義が浮かぶだろうさ、明白に(^^;
384:132人目の素数さん
15/12/21 22:47:58.39 e26dcM6q.net
そんなごまかし回答は要らない。
おれは、ID:d5oIGObWが言った「任意に小さい正の実数」なるものが数学的に定義できるのか?
と聞いている。
定義できるのならその定義を書け。
定義できないのなら>>337を訂正しろ。
それ以外の回答はごまかしだ。
385:132人目の素数さん
15/12/21 22:52:19.91 e26dcM6q.net
そもそも俺が聞いているのは ID:dg12Pvrp=ID:d5oIGObW にだ。
ID:qjcQyNUZ には聞いていない。
だが、ID:qjcQyNUZ が ID:d5oIGObW の肩を持つと言うなら、ID:qjcQyNUZ が回答しろ。
余計なごまかし回答は不要だ。
386:132人目の素数さん
15/12/21 23:09:23.69 dg12Pvrp.net
>>358-359
εが分からないからってそういきり立たんでもよいでしょう。
"任意に小さい正の実数"でピンとこなければ、『εは0<ε<1e-10を満たす任意の実数』とでもしようか。
"arbitrarily small positive quantity"という言い回しはよく使う。
数学をやっている人間にはこれで十分伝わる。だがお前には伝わらなかった。
俺の説明が足りなかったのだろう。すまなかったね。
387:132人目の素数さん
15/12/21 23:23:31.23 e26dcM6q.net
>>360
ではその「当てることのできる確率 p 」=1-εとやらは、1-(1e-10) < p < 1 を満たす任意の実数 p ということだな?
では次の質問
何で一つの特定事象の確率が無限個あるんだ?
1e-10 という値はどっから出てきたんだ? 1e-10 であって 1e-9 でない根拠は何だ?
388:132人目の素数さん
15/12/21 23:24:29.09 LysZ3YDv.net
ぱーちくりん同士が基地外のネタをやり取り
検索して言葉を並べて分かったつもり
389:132人目の素数さん
15/12/21 23:35:47.43 e26dcM6q.net
ID:dg12Pvrp の居住地域じゃ、明日の降水確率は 30%~70% と出るらしい
さぞ不便だろう
390:132人目の素数さん
15/12/21 23:52:44.91 dg12Pvrp.net
>>361
>何で一つの特定事象の確率が無限個あるんだ?
>1e-10 という値はどっから出てきたんだ? 1e-10 であって 1e-9 でない根拠は何だ?
1e-10でも1e-9でもよい。
もちろん0.1でも1でもいいんだが、この記事が言いたいのは
"確率をいくらでも1に近づけられる"という事実だ。
εを大きく取っても面白くはない。
当たる確率を99/100にもできるし、9999/10000にもできる。
選択公理を使えばそういう戦略が取れると記事は言っている。
もし興味があるなら記事を読んでみてほしい。
俺を相手にするよりその方が手っ取り早い。
391:132人目の素数さん
15/12/22 00:13:02.04 iWQ/u867.net
分からんのでスタコラ逃げます
理解出来てない物を「紹介」www
392:132人目の素数さん
15/12/22 00:24:24.34 kUdmxkvD.net
>理解出来てない物を「紹介」
そんなことしてるとスレ主になっちゃうぞ!
393:132人目の素数さん
15/12/22 05:45:05.04 UYdsp7cw.net
名無しを釣ってるだけだろ
運営のおっさん乙
394:132人目の素数さん
15/12/22 11:25:14.27 0+V4LQWC.net
>>323の「爺」と>>367の「おっさん」という表現の意味が似ていて紛らわしいから
一応断っておくが、私(おっちゃん=>>319)は昨日書いていない。
以下は、単なる自己レスだが、>>319の話は取り消し。昨日実際に計算したら、
式の中に、>>319にそぐわなくなるような部分が生じ、間違いが見つかった。
少なくとも、リーマンのζ関数についてはそうなった。
ちなみに、計算していたら、無理性判定のための面白い定理?は見つかった。
395:132人目の素数さん
15/12/22 13:54:29.44 0+V4LQWC.net
意味があるかは知らんが、値の計算が正しければ、e-ζ(3) は上から(ζ(3)は下から)次のように評価出来るようだ。
無限級数 ζ(3)=Σ_{n=1,…,+∞}(1/n^3) 、e-1=Σ_{n=1,…,+∞}(1/n!) の第n項について、
n=1,2,3,4,5 のとき 1/n!≧1/n^3、また n≧6 のとき 1/n!<1/n^3。よって、
(e-1)-ζ(3)=Σ_{n=1,…,+∞}(1/n!)-Σ_{n=1,…,+∞}(1/n^3)
=Σ_{n=2,…,4}(1/n!)-Σ_{n=2,…,4}(1/n^3)+{(1/5!)-(1/5^3)}
+Σ_{n=6,…,+∞}(1/n!)-Σ_{n=6,…,+∞}(1/n^3)
<Σ_{n=2,…,4}(1/n!)-Σ_{n=2,…,4}(1/n^3)+{(1/5!)-(1/5^3)}。
X=Σ_{n=2,…,4}(1/n!)、Y=Σ_{n=2,…,4}(1/n^3) とおくと、(e-1)-ζ(3)<X-Y+{(1/5!)-(1/5^3)}。
ここで、X=(1/2!)+(1/3!)+(1/4!)=(1/2)+(1/6)+(1/24)=17/24、
(1/5!)-(1/5^3)=(1/120)-(1/125)=1/25、 また、
Y=(1/2^3)+(1/3^3)+(1/4^3)=(1/8)+(1/27)+(1/64)
=(9/64)+(1/27)=(243+64)/(32・27)
=307/(32・27)。
従って、
(e-1)-ζ(3)<17/24-307/(32・27)+1/25=(17/24+1/25)-307/(32・27)
=449/(24・25)-307/(32・27)
=449/(3・8・5^2)-307/(4・8・3^3)
=(449・4・3^2-307・5^2)/(3^3・4・8・5^2)
=(12164-7675)/(3^3・4・8・5^2)=4489/(3^3・4・8・5^2)
=4489/21600
で、 e-ζ(3)<1+(4489/21600)=26089/21600。従って、ζ(3)>e-(26089/21600)。
396:132人目の素数さん
15/12/22 13:57:27.44 0+V4LQWC.net
あ、(1/5!)-(1/5^3)の計算間違えた。途中から計算狂ってる。やり直しだ。
397:132人目の素数さん
15/12/22 14:53:30.27 0+V4LQWC.net
こうか。
無限級数 ζ(3)=Σ_{n=1,…,+∞}(1/n^3) 、e-1=Σ_{n=1,…,+∞}(1/n!) の第n項について、
n=1,2,3,4,5 のとき 1/n!≧1/n^3、また n≧6 のとき 1/n!<1/n^3。よって、
(e-1)-ζ(3)=Σ_{n=1,…,+∞}(1/n!)-Σ_{n=1,…,+∞}(1/n^3)
=Σ_{n=2,…,4}(1/n!)-Σ_{n=2,…,4}(1/n^3)+{(1/5!)-(1/5^3)}
+Σ_{n=6,…,+∞}(1/n!)-Σ_{n=6,…,+∞}(1/n^3)
<Σ_{n=2,…,4}(1/n!)-Σ_{n=2,…,4}(1/n^3)+{(1/5!)-(1/5^3)}。
X=Σ_{n=2,…,4}(1/n!)、Y=Σ_{n=2,…,4}(1/n^3)
とおくと、(e-1)-ζ(3)<X-Y+{(1/5!)-(1/5^3)}。 ここで、
X=(1/2!)+(1/3!)+(1/4!)=(1/2)+(1/6)+(1/24)=17/24、
(1/5!)-(1/5^3)=(1/120)-(1/125)=1/(120・25)、 また、
Y=(1/2^3)+(1/3^3)+(1/4^3)=(1/8)+(1/27)+(1/64)
=(9/64)+(1/27)=(243+64)/(64・27)
=307/(64・27)。
従って、
(e-1)-ζ(3)<17/24-307/(64・27)+1/(120・25)=(17/24+1/120・25)-307/(64・27)
=(85/120 + 1/120・25) - 307/(64・27)
=(85・5^2+1)/(120・5^2) - 307/(64・27)
=2126/(120・5^2) - 307/(64・27)=1063/(60・5^2) - 307/(64・27)
=1063/(3・4・5^3) - 307/(16・4・3^3)
=(1063・16・3^2 - 307・5^3)/(16・4・3^3・5^3)
=(153072 - 38375)/(16・4・3^3・5^3)=114697/(16・4・3^3・5^3)
=114697/216000
で、 e-ζ(3)<1+(114697/216000)=330697/216000。従って、ζ(3)>e-(330697/216000)。
398:132人目の素数さん
15/12/22 15:50:27.02 0+V4LQWC.net
もしかして、>>319のζ(2k+1) kは正整数 の超越性は正しかったのか。
なるほど~。無理数度の話が取り消しになるのか。
399:現代数学の系譜11 ガロア理論を読む
15/12/26 12:51:18.72 02nKI8Hx.net
どうも。スレ主です。
おっちゃん、どうも
みなさん、どうも
ご無沙汰でした
400:現代数学の系譜11 ガロア理論を読む
15/12/26 13:05:45.49 02nKI8Hx.net
初代スレが
現代数学の系譜11 ガロア理論を読む
スレリンク(math板)
1 名前:名無しさん[] 投稿日:2012/01/31(火) 22:32:36.78 ID:LTM9xtnu
で、そろそろ丸4年
当時、大学1年は卒業で、翌4月の新入生が4年か・・
多少でも役に立ったのかね
が、4年ちかくやって思うのは、つくづく2ちゃんねるなんて、数学には向かないねと
要するに、普通の数学記号が使えない
添え字が使えないし、分数も”/”で、普通の分数じゃないし、もう少し高度な記号になると、だめ
まあ、英米掲示板みたく、普通の数式や数学記号が使える掲示板を学生などが自分たちで作るべきだろうね
まあ、現状はそういうことで、細かい証明をこのスレでやるつもりはない
1)一つは情報集約:良い情報を集める
2)切り口、視点、コンセプト(概念)を中心に(こまごました証明を離れた高い視点)
そういうことを、このスレでは目指しています
「良い情報を集める」は、私のメモ帳でもあるんだよ
”切り口、視点、コンセプト(概念)”を、私は重視しています。こまごました証明より(^^;
401:現代数学の系譜11 ガロア理論を読む
15/12/26 13:14:23.62 02nKI8Hx.net
大学レベルの話題のスレで、まともに機能しているスレが
402:ほとんどない 私は、”Inter-universal geometry と ABC予想 11”スレはよく見ています スレがアクティブだし、結構面白い情報があるし まあ、それ以外には、あんまし 内容は良いけど、人がほとんどいないとか そういう低レベルの2ちゃんねる数学板では、ガロアすれは、まだましだろうと
403:現代数学の系譜11 ガロア理論を読む
15/12/26 13:17:20.11 02nKI8Hx.net
そういう意味で、自分も含めて、このスレに来てよかったねと
そういうスレを目指しています
404:現代数学の系譜11 ガロア理論を読む
15/12/26 13:26:13.23 02nKI8Hx.net
>>364
どうも。スレ主です。
時枝先生の記事、いまいちよく分からんのよ
分かったらレスください
1.数セミ 11月号P36 前段で、実数列の同値類を使っている。そして、「決定番号」なるものを使っている
2.後段で、閉じた箱を100列に並べ、「決定番号」なるものを使っている。それ成り立つのか?
405:132人目の素数さん
15/12/26 13:31:16.79 7VrmZW5F.net
スレ主、おっちゃんだけど、再来年4月でパソコンが使えなくなるかも
知れないんだが、どうしたらいい?
今使っているパソコンのOSが Windows Vista で、2017年3月だかで
そのサポート期限が切れる。新しくパソコン買う金も余りないんだよね。
ウィルス感染対策のサポート期限が切れても、LaTeXとかで論文書くだけなら使える?
それとも、安上がりなパソコンで事足りる? 果たして、最善の対策は何だろうか?
一番正確なのは、多分、昔ながらのように、ノートに書いて送る方法なんだろう。
岡潔のときも、そんな感じで論文をノートに書いて世に出したそうだ。
幾度もノートで研究結果を送るといっている裏には、そのような個人的事情の背景もある。
406:現代数学の系譜11 ガロア理論を読む
15/12/26 13:33:33.61 02nKI8Hx.net
>>377 つづき
3.時枝先生の記事で最初の問題設では、可算無限ある箱に同じ数字でも良いから数字を入れるという。が、簡単のために、使った数字は不可にして、必ず異なる数字にしよう
4.そうして、数字を入れた箱を100列並べた。どうも、記事では、これが100の同値類にできるようだ(100列の定義が不明確だが)。100の同値類に限定できる根拠がわからない
407:現代数学の系譜11 ガロア理論を読む
15/12/26 13:48:48.32 02nKI8Hx.net
>>378
おっちゃん、どうも。スレ主です。
”再来年4月でパソコンが使えなくなるかも知れない”?
それはそれは
案
1.最善は、新しいPCを買う。そのためのお金を作る(稼ぐ)*):Windows Vistaって、ハードも使用期限切れになる可能性も大かも
2.LINUXとかの選択肢もあるだろうが:それにしても、もう一台Windowsを持って、そちらにバックアップを作っての話だろう
*)いまPCの値段下がっていると思うよ。10万以下も URLリンク(kakaku.com)
おすすめじゃないが、中古もある URLリンク(kakaku.com)
408:132人目の素数さん
15/12/26 14:09:08.03 7VrmZW5F.net
>>380
なるほど。5、6万が今のパソコンの相場なのか。
それなら、何とかなるかな? そのあたりは、正確には分からない。
まあ、情報サンクス。
過去にパソコン買って1年近くでHDDが壊れたことがあるんだけど、
これって、偶然の出来事だよね? それとも、何らかの必然的要素がある?
一体、この現象は何だったんだろう?
409:132人目の素数さん
15/12/26 14:20:09.11 7VrmZW5F.net
>>380
勿論、>>381でのHDDがすぐに壊れたというのは、新品のパソコンを買った上での話。
普通の感覚ではあり得ない筈のこんな出来事が、現実に起きたことがある。
信じられんだろ? 不思議だろ。一体何だったんだろ?