現代数学の系譜11 ガロア理論を読む17at MATH
現代数学の系譜11 ガロア理論を読む17
- 暇つぶし2ch180:な超越基底Sの例 」 は、どれも知らない。” で、”「Q(S)はゼロ集合」「 Q(S)=R 」のいずれか”は、どう思っているの? 「 Q(S)=R 」が成り立てば、Q(S)はルベーグ可測だ。一方、「Q(S)はゼロ集合」のQ(S)もルベーグ可測だ。 一方で、「超越基底 B の濃度はその取り方によらず一定であることが証明できる」という主張がある https://ja.wikipedia.org/wiki/%E4%BD%93%E3%81%AE%E6%8B%A1%E5%A4%A7 体の拡大 これは、言い換えれば、超越基底 Bは、実質的には一意だと Q(S)がルベーグ可測な集合になる場合に、Q(S)=Rの場合は無限大だ。一方で、「Q(S)はゼロ集合」だと。 それ、”ルベーグ可測な集合全体は完全加法族を成”すとか https://ja.wikipedia.org/wiki/%E3%83%AB%E3%83%99%E3%83%BC%E3%82%B0%E6%B8%AC%E5%BA%A6 ルベーグ測度 と、「超越基底 Bは、実質的には一意」という話と両立する?
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch