15/11/05 20:32:28.52 WuHz5GOE.net
ちなみに、当時の俺は別解も残していたようだ。
別解:(2)までは同じ。次に、
任意の x∈R に対して f(x)≦0 が成り立つ … (3)
ことを示す。ある x∈R に対して f(x)>0 だとする。このとき、
f(x-y)≦-yf(x)+f(f(x))
という不等式において、y→+∞ とすると、f(x)>0 に注意して、
lim[y→+∞] f(x-y)=-∞
が成り立つ。特に、yが十分大きければ常に f(x-y)<0 である。
すなわち、ある δ>0 が存在して、y≧δ のとき常に f(x-y)<0 である。
これに(2)を適用すれば x-y≧0 となる。結局、y≧δ のとき常に x-y≧0 が成り立つことになる。
そこで、y=max{ δ, x+1 } と置けば、y≧δ であるから x-y≧0 となるが、
一方で x+1≦y だから矛盾する。よって、(3)が成り立つ。(このあとは同じ)
結局、(2)さえ手に入れば、あとはε-δ論法的な "やわらかさ" があって、どうにでもなりそうな感じ。
こういうのは普通、最後の最後までガチガチのパズルで進むものだから、珍しい現象に思える。
まあ、もともとも条件式が「不等式」だから、実は当たり前の現象かもしれんが。