現代数学の系譜11 ガロア理論を読む16at MATH現代数学の系譜11 ガロア理論を読む16 - 暇つぶし2ch■コピペモード□スレを通常表示□オプションモード□このスレッドのURL■項目テキスト700:ヘ正しいが、証明が無いので不正解。 【準備】 あるε>0に対し、a∈X のε近傍を U(a,ε) と書く。U(a,ε):={x∈X||a-x|<ε} である。 f:A⊂X→Y が a∈A で連続である ⇔ ∀ε>0 に対し、ある δ>0 が存在して、f(U(a,δ)∩A)⊂U(f(a),ε) とする。 【命題】 距離空間 (X,dX) の開集合 A⊂X から (Y,dY) への写像 f:A→Y が連続であるための必要十分条件は、 Y の任意の開集合 U に対して f^(-1)(U) が X の開集合となることである。 【証明】 (1)f は A で連続であると仮定 U は Y の開集合とする。 f^(-1)(U)={} であるなら、主張は正しいので、以下、f^(-1)(U)≠{} とする。 a∈f^(-1)(U) とする。a∈A、f(a)∈U である。 U は Y の開集合であるから、ある ε>0 が存在して、U(f(a),ε)⊂U 仮定より、ある δ1>0 が存在して f(U(a,δ1)∩A)⊂U(f(a),ε)⊂U すなわち U(a,δ1)∩A⊂f^(-1)(U) A は X の開集合であるから、ある δ2>0 が存在して、U(a,δ2)⊂A δ=min(δ1,δ2) とおけば、U(a,δ)⊂U(a,δ1) かつ U(a,δ)⊂U(a,δ2)⊂A であるから、U(a,δ)⊂U(a,δ1)∩A⊂f^(-1)(U) ゆえに、f^(-1)(U) は X の開集合である。 (2)Y の任意の開集合 U に対し、f^(-1)(U) は X の開集合であると仮定 a∈A、ε>0 とする。 U(f(a),ε) は Y の開集合であるから、仮定より、f^(-1)(U(f(a),ε)) は X の開集合である。 よって、ある δ>0 が存在し、U(a,δ)⊂f^(-1)(U(f(a),ε))⊂A すなわち f(U(a,δ)∩A)⊂U(f(a),ε) ゆえに、f は A で連続である。■ 次ページ最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch