15/11/23 08:24:52.27 J9tPnM+x.net
>>468-469 で書いたことに対してコメントをくれ
> 命題:あるY の開集合U に対してf^-1(U) がX の開集合とならないならば、f:A→Yは連続ではない.
上の命題に対するスレ主の解答は下記だ。異論があればどうぞ。
> 床関数f:X->YはXで不連続なのでf^-1(U)がXの開集合とならないUが存在する。
> しかし“fの定義域をAに制限すれば”fは連続なので、上の命題は偽である。
上のとおりであれば、下記が私の反論だ。
> しかし細かいことを言えば、元のf_X:X→Yと定義域を制限したf_A:A→Yは異なる写像だ。
> 証明の前段と後段で写像をすり替えてしまったので、論理的には証明は不完全かもしれない。
"かもしれない"と書いたが、間違いなく不完全だ。
定義域を制限/拡張した写像は明確に区別しなければならない。
逆像を問題にしている今のケースでは特にそうだ。
それを伝えるために以下の問題を出したが、スレ主は無視だったな。
> 定義域の意味分かってる?
>
>> Xの部分集合Aを-1以上1以下の閉区間、f:A→Yをf(x)=xで定義する。
>
> このとき、Yの要素2の逆像を答えてみな。
そもそも元の命題は
『命題 距離空間(X, dX)の部分集合 A⊂X から(Y, dY ) への写像f : A → Y が連続であるための必要十分条件は,任意のY の開集合U に対してf^-1(U) がX の開集合となることである.』
であって、fの定義域はAと明確に書かれているではないか。
Xを定義域とする別の写像のことなど言及されていない。