15/11/22 10:53:24.69 G4dpeoO2.net
>>508
(>>511の補足)
Q(S)上超越的な実数は、必ず存在する。もし存在しなかったら、
Q(S)上超越的な複素数は存在しなくなる。しかし、RがQ(S)上代数拡大体だから、
複素数体CもQ(S)上代数拡大体である。複素数がQ(S)上代数的独立か代数的従属か
についても同様になる。従って、定義上は、Sは複素数体Cの有理数体Q上の超越基底Sになる。
だから、実数体Rの有理数体Q上の超越基底Sは複素数体Cの有理数体Q上の超越基底S
でもある。これは、そもそも、Sを考えたときの体の拡大R/Qの扱いに反し矛盾する。
R=C として実数体Rの有理数体Q上の超越基底Sを考えていたことになる。
2つの体の拡大R/Q、C/Qを同一視して有理数体Q上の超越基底Sを考えていたことになる。
これは R≠C に反し、矛盾する。そういうことだ。