15/10/20 11:25:05.12 /zWTv0vR.net
>>994
最初に「長さがA、B」と書いたには、2本の長さは異なるという意味でそう書いたつもりでしたが、
言葉足らずでした。改めて、同じ長さは無いという状況でお願いします。
>>995
何度もありがとうございます。言われるようにどこかで接する箇所は多数あるのは解りますが、
それが接線で接するとは思えません。できれば2cm、4cmで角度開き120度の場合で近似値ででも
結構ですので2種類の解を教えて頂ければ納得できるかもしれませんが・・・。
1026:132人目の素数さん
15/10/20 11:41:31.43 w5eheK8U.net
>>996
いや、接点で線分を接線として接するように出来るよ。
2本の半直線の端を繋いで間の角を120°にする。
楕円を両方の半直線に接するようにしながら滑らせればある程度扁平な楕円なら角から接点までの距離が2:4にすることが出来る。
ある楕円で可能であった場合、それよりさらに扁平な楕円でも出来る。
1027:969
15/10/20 13:33:21.18 /zWTv0vR.net
>>997
以下は2cm、4cmで角度90度で検証してみた結果です。
ID:w5eheK8U さんのお陰でやっと自分の間違いに気づけました。
しつこい疑問にお応え下さり本当にありがとうございました。
URLリンク(fx.104ban.com) 👀
Rock54: Caution(BBR-MD5:e2f8aa94cb59e06487c2578403bbb7c5)
1028:132人目の素数さん
15/10/20 15:30:15.04 gaBqQzIo.net
2次曲線ax^2+bxy+cy^2+dx+ey+f=0の(x0,y0)における接線の方程式
(2ax0+by0+d)(x-x0)+(bx0+2cy0+e)(y-y0)=0
1029:132人目の素数さん
15/10/20 15:43:51.98 XcrdZus/.net
不定積分 ∫dx/{x+√(x^2+x+1)} を教えてください。
1030:132人目の素数さん
15/10/20 17:20:00.92 QErfjqTl.net
梅
1031:1001
Over 1000 Thread.net
このスレッドは1000を超えました。
もう書けないので、新しいスレッドを立ててくださいです。。。
1032:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています