15/09/18 09:18:19.07 6TpvEcX+.net
関数f(x)=x^3+2x^2-4xについて
(1)
曲線y=f(x)上の点(t、f(t))における接線の方程式をもとめよ。
A. y=(3t^2+4t-4)x-2t^3-2t^2
(2)
点(0、K)から曲線y=f(x)に引くことができる接線の本数を調べよ。
<解説>
(0,k)を通るから、k=-2t^3-2t^2 となる。y=k とy=-2t^3-2t^2 との交点の数 = 接線の本数 と一致する。
(2)が理解できません。
y=k とy=-2t^3-2t^2 との交点の数 = 接線の本数 と一致するのは何故ですか?