15/09/13 09:59:37.87 8lVD4F4L.net
>>382 つづき
鈴木先生の話は、トンプソンの有限単純群の定理(有限単純群は偶数位数であるか、さもなくば素数位数の巡回群である)から URLリンク(ja.wikipedia.org)
有限単純群について、位数2の元を取り、位数2の元による中心化群を考えることで、有限単純群の分類を進めることができると
下記は、以前にも引用したが、ご参考まで
URLリンク(homepage3.nifty.com)
別冊数理科学「群とその応用(サイエンス社,1991年10月)」 有限単純群の分類 五味健作
抜粋
結局次のような,位数2の元の中心化群についての非常に一般的な定理が得られた.
均衡群定理(Gorenstein-Walter) 有限群Gの交換可能な位数2の元について均衡条件が成り立ち,GのSylow 2-部分群が十分大きければ,Gの任意の位数2の元の中心化群Cに対してO(C)⊂O(G)が成り立つ.
単純群を位数2の元の中心化群の構造によって分類することがBrauerにより提唱され,1970年にはすでに夥しい研究成果が積み上げられていた. とくに広く研究されていたのは,次のような「位数2の元の中心化群による特徴づけ問題」であった.
「G*を(たとえばPSL(n,q)のような)知られている単純群とし,H*をG*の位数2の元の中心化群とする. 単純群Gの位数2の元の中心化群HがH*と同形であるとき,GはG*と同形であることを証明せよ.」
このような研究が盛んに行なわれた結果,単純群の位数2の元の中心化群の構造を一般的に決めることができれば,単純群の分類が確かにできそうだということが明らかになってきた.