15/08/29 20:31:47.00 eoE5GmxF.net
>>178 つづき
いまとなれば、21世紀の常識ですが、一応書かせてもらった・・(^^;
URLリンク(ja.wikipedia.org)
ラングランズプログラム(英: Langlands program)は、代数的整数論におけるガロワ群の理論を、局所体およびそのアデール上で定義された代数群の表現論および保型形式論に結び付ける非常に広汎かつ有力な予想網である。
同プログラムは Langlands (1967, 1970) により提唱された。
相互律
ラングランズプログラムの出発点は、二次の相互律を一般化したアルティンの相互律であると考えられる。
アルティンの相互律は、ガロワ群が可換であるような代数体のガロワ拡大に適用して、L-函数をガロワ群の一次元表現に対応させ、
さらにそれら L-函数がある種のディリクレ L-級数やヘッケ指標から構成されるより一般の級数(つまり、リーマンゼータ函数のある種の対応物)と同一視できることを主張するものである。
これら種々の異なる L-函数の間の具体的な対応が、アルティンの相互律を構成しているのである。
非可換なガロワ群やその高次元表現に対しても、L-函数は自然な方法で定義することができる(アルティン L-函数)。
ラングランズの考察は、アルティンの主張をより一般の仮定の下で定式化することを許すような、ディリクレ L-函数の真の一般化を求めることであった。
保型形式論
ヘッケ(英語版)は既に、ディリクレ L-函数を保型形式(C の上半平面上で定義される正則函数である種の函数等式を満たすもの)に関連付けていたが、
ラングランズはそれを(有理数体 Q のアデール環 A 上で定義される一般線型群 GL(n, A) の無限次元既約表現の一種である)保型尖点表現に対して一般化した。(Q のアデール環というのは、Q の任意の完備化を一斉に扱ったようなものである)。
ラングランズは、保型 L-函数をその保型表現に対応させ「任意のアルティンのL-函数が、代数体のガロワ群の有限次元表現から生じることと、保型尖点表現から生じることとは等しい」と予想した。
これをラングランズの「相互律予想」という。一口に言えば、相互律予想は簡約代数群の保型表現とラングランズ群から L-群への準同型との間の対応を与えるものである。
つづき