現代数学の系譜11 ガロア理論を読む14at MATH
現代数学の系譜11 ガロア理論を読む14 - 暇つぶし2ch85:現代数学の系譜11 ガロア理論を読む
15/07/04 19:44:53.65 UNrp5ytb.net
>>70
どうも。スレ主です。
過去ログにもあるけど、工学系ですよ
でも、ヘビサイドの階段関数とか演算子法は、工学系から出たんだ
グリーン関数も、正規の数学ではなく、実際的な観点から考えられたという
URLリンク(ja.wikipedia.org)
ヘヴィサイドの階段関数
URLリンク(ja.wikipedia.org)
演算子法(えんざんしほう)とは、解析学の問題、特に微分方程式を、代数的問題(普通は多項式方程式)に変換して解く方法。オリヴァー・ヘヴィサイドの貢献が特に大きいので「ヘヴィサイドの演算子法」とも呼ばれるが、厳密な理論化はその後の数学者たちにより行われた。
URLリンク(ja.wikipedia.org)
グリーン関数 (Green's function) とは、微分方程式や偏微分方程式の解法の一つであるグリーン関数法に現れる関数である。グリーン関数法は、英国の数学者ジョージ・グリーンによって考案された。
URLリンク(ja.wikipedia.org)
ジョージ・グリーン
パン屋の息子として生まれ、正規の教育をほとんど受けずに粉挽きの仕事をしながら独学でポテンシャル理論の論文を書いたという経歴の持ち主である。
1833年、40歳でケンブリッジ大学ゴンヴィル・アンド・キーズ・カレッジに入学。
4年後には数学の優等者試験で4位の成績をとる。光学、音響学、水力学について6本の論文を書き、1839年にはフェローとなるが、健康を崩して翌年に故郷へ戻る。

86:現代数学の系譜11 ガロア理論を読む
15/07/04 19:46:01.48 UNrp5ytb.net
>>71-72
おっちゃん、ありがとう!

87:現代数学の系譜11 ガロア理論を読む
15/07/05 07:30:46.17 viMYoeuU.net
>>71
おっちゃん、どうも。スレ主です。
distributionは、下記が参考になるだろう
URLリンク(ir.lib.osaka-kyoiku.ac.jp)
第2超局所解析の基本 森岡, 達史 2000

88:現代数学の系譜11 ガロア理論を読む
15/07/05 08:45:14.62 viMYoeuU.net
下記ご参考
URLリンク(www.st.sophia.ac.jp)
理工ミニレクチャー第9回 超関数の理論、熱方程式、ディジタル信号処理の数学的基礎付け 2012年以前
吉野邦生(よしの くにお)上智大学理工学部助教授 専門は解析汎関数の理論と応用
どんな本を読んでいたのですか?
“分散公式の証明、場の量子論における解析性、楔の刃の定理”などの題名を見ているだけでワクワクしてました。
寺沢寛一先生の“自然科学者のための数学概論(上、下)“、犬井鉄郎先生の”特殊関数“や”応用偏微分方程式”など読んで“ラプラス方程式の解の特異性は虚の方向に伝播する“なんていう文章に感動してました。
勿論、証明はないんですけど、直感的に言い切る所がすごいと思いました。数学的には今では、”超局所解析学“という理論でキチンと証明されてます。
量子力学の講義がないのは非常に不思議です。行列の積が非可換だというのも量子力学をやって初めて意味が分かった気がします。
もっともこういうのも授業で習うと途端につまらなくなるんですよね。 修士論文で目指した定理も(あとで判ったのですが)レッジェ極理論(複素角運動量の理論)や量子統計力学(松原グリーン関数)で使われています。
最近、Bose―Einstein凝縮の事を調べていたら、昔、自分が計算していた積分が出ていて、リーマンゼータ関数やアッペル関数が出ているのを見てなんだか懐かしかったですね。
最近はどのような研究をしているのでしょうか?
韓国や、セルビア、ベルギーの研究者たちと表題にある熱方程式の理論や調和振動子の波動関数による超関数の理論と調和解析への応用について研究しています。
これは、5、6年前から始めた研究なんですが、はじめのうちは、なんだか、さっぱり分からなくて、当時指導していた大学院の学生と頭を抱え込んでいました。杉田玄白や前


89:野良沢の心境でした。 セルビアの研究者達の論文が解読できてから、いろいろ自分でも論文が書けるようになりました。2004年のセルビアでの研究会ではじめてセルビアの研究グループの人たちと会いました。 自分が読んでいた論文の著者が女性数学者達だとは知りませんでした。指導していた大学院生はこのテーマで理学博士になり、今は研究者として活躍しています。



90:現代数学の系譜11 ガロア理論を読む
15/07/05 08:54:35.95 viMYoeuU.net
これも
URLリンク(www.kanenko.com)
カーネンコの講義録
平成16年度(2004)の担当講義
URLリンク(www.kanenko.com)
情報科学科34年『情報科学特別講義 II』のページ
本講義は, 僕の専門である超函数と偏微分方程式の超局所解析の解説を行うものです.
ここでこんな講義をやるとは全く予期していなかったのですが, 好奇心旺盛な 今年の卒研生が, 僕がどんな研究をしているのか知りたいというので, どこま で続くか分かりませんが, やってみることにしました.
毎回の講義の概要
第1回(10月6日):超函数とは?
超函数の歴史的背景を説明し, 超函数の3通りの捉え方をデルタ函数を例に取 り説明しました.
第2回(10月13日):超函数と積分
シュワルツ流の超函数と佐藤流の超函数に付いて, 定積分の定義を検討しまし た.
第3回(10月20日):超函数と微分
超函数のシュワルツ式微分の定義の準備のため, 局所凸位相線型空間とその双 対空間の話をしました.
(略)
第7回(12月1日):緩増加超函数のフーリエ変換
シュワルツ空間の定義をし, 緩増加超函数のフーリエ変換を導入しました.
12月8日 河村先生のご本の校正をみんなでやったため休講
第8回(12月15日):フーリエ超函数
佐藤流のフーリエ変換論の紹介をし, 1のフーリエ変換と, ポアソンの和公式 の証明をしました.
12月22日 応用数学合同シンポジウムに参加のため休講
第9回(1月12日):リュービルの定理
緩増加超函数の偏微分方程式論への応用を述べ, 佐藤超函数の場合との 違いを解説しました.
第10回(1月19日):Fourier 超函数の構造定理
佐藤の超函数が大域的に連続函数の無限階微分で表されることの証明を途中ま でやりました.
第11回(2月2日):Paley-Wiener の定理と実解析解の延長
定数係数線型偏微分作用素に対する Ehrenpreis の基本原理を解説し, 小生の 修士論文の内容である, 凸コンパクト集合への実解析解の延長定理を証明の粗 筋とともに紹介しました.
これで全日程終了です. 今まで絶対無理だと思っていましたが, 小生の主要業 績を学部生に対して半年で解説しようと思えばできるんですねえ. (*^^*)

91:132人目の素数さん
15/07/05 09:03:53.38 NF+6yVEz.net
スレ主ちんこでかそう

92:現代数学の系譜11 ガロア理論を読む
15/07/05 09:20:07.02 viMYoeuU.net
この程度のことは、どこにでも書いてありますが
まあ、情報集約ということで、アップしておきます
URLリンク(ja.wikipedia.org)
超函数論に重要な影響を与えたのは、偏微分方程式論や群の表現論などからの技術的な要請であった。
先駆的な研究
19世紀の数学には、例えばグリーン函数の定義やラプラス変換、あるいは(可積分函数のフーリエ級数には必要でない部分の)リーマンの三角級数論などが、超函数論の片鱗として垣間見える。
これらは当時、解析学の一部とは扱われていなかったものである。
工学におけるラプラス変換の重用は、経験則に基づく記号的操作としての演算子法を生み出した。
演算子法の正当化は発散級数を用いて与えられたため、純粋数学の観点からは悪い風評をうけることとなるが、これらは後の超函数法の典型的な応用先である。
1899年に出版されたヘヴィサイドの本 Electromagnetic Theory(『電磁気論』)は演算子法の定番の教科書となった。
ルベーグ積分が導入されると、超函数は初めて数学の中心に踊り出ることとなった。ルベーグ積分論では、殆ど至る所一致する可積分函数はすべて同値であると看做される。
これはルベーグ積分論において函数の個々の点における値というのは函数の重要な特徴ではないということを意味する。
可積分函数の本質的な特徴は、函数解析学における明確な定式化(つまり、他の函数の集合上で定義される線型汎函数として定義する方法)のもとで与えられた。こうして、弱微分の概念が定義されるようになる。
1920年代後半から1930年代に掛けて、その後の研究の基となる更なる展開がなされる。
ディラックのデルタ函数はポール・ディラックが(彼の科学的形式主義の一部として)大胆に定義したもので、これは測度を(素性のよい函数を成す電荷密度のような)密度として考えるという扱い方をしている。
ソボレフは、偏微分方程式論の研究において偏微分方程式の弱解をきちんと扱うために、数学の観点からも十分正当な超函数論を初めて定義した。
同じ頃、関連するほかの理論がボホナーやフリードリヒらによっても提案されている。ソボレフの業績は後にシュワルツによってさらに拡張され発展することとなる。

93:現代数学の系譜11 ガロア理論を読む
15/07/05 09:21:59.76 viMYoeuU.net
>>78
どうも。スレ主です。
ID:NF+6yVEzくんか
君はどうもそれに拘っているようだが
数学ができないで悩んでいるのか?

94:現代数学の系譜11 ガロア理論を読む
15/07/05 09:38:51.07 viMYoeuU.net
>>75
第2超局所解析の第2の意味が分からなかったが、下記で委員会?
URLリンク(kaken.nii.ac.jp)
特異的なフーリエ積分作用素・超局所双曲性・第2超局所解析 戸瀬 信之 慶應義塾大学・経済学部・教授
Abstract(Latest Report)
1(特異約なフーリ工積分作用素)線形双曲型偏微分方程式の解の(超局所)特異性の伝播の研究においては、解の特異性の分岐、conical refractionなど様々な現象が解析されてきた。
特に、結晶光学に現れるconical rehactionの現象は、自然界に現れる自然なものとして多くの視点から研究が進められてきた。
1985年ころから、conical refractionの研究に、余接束をその包合的な多様体に沿って爆裂して解析を行なう第2超局所解析(second microlization)を用いて分析を行なうことが試みられ、P. Laubin(LIEGE大)や私の研究により一定の結果を得る事ができた。
第2超局所解析は、包合的な多様体上の超局所特異性を、余接束をその包合的な特性多様体にそって爆裂した空間上で解析を行なうものであるが、上で述べた研究で中途半端になっているものがある。
超局所解析では、量子化接触変換、フーリ工積分作用素によつて、擬微分方程式が単純特性的な点において簡単な標準形にうつることが示されているが、第2超局所解析ではこの方向の研究が不十分である。
すなわち、変換理論自体はあるのであるが、マイクロ函数の第2超局所特異性を分解した層を部分層として含む第2マイクロ函数の層の枠組みで構成されたものである。
この研究では、解の構成に変換理論が使えるように、マイクロ函数の第2超局所特異性を分解した層の枠組みで変換理論を構成するための様々な準備を行なつた。
2(第2超局所特異性の基礎的な研究)第2超局所解析で自然に現れる第2超函数の層は、正則包合的な多様体上に制限した佐藤のマイクロ函数の層を含む。この第2超函数の層を退化した偏微分方程式の境界値問題に応用した。

95:132人目の素数さん
15/07/05 09:56:18.66 NF+6yVEz.net
>>80
そうだよ
数学ができないからちんこのことしか考えられない

96:現代数学の系譜11 ガロア理論を読む
15/07/05 11:40:17.31 viMYoeuU.net
>>82
どうも。スレ主です。
正直


97:だね では、君にはこの言葉を贈ろう http://proverbes.kitakama-france.com/index.php?%E8%AB%BAIAK フランス語のことわざI-1 Au royaume des aveugles, les borgnes sont rois. 【逐語訳】「めくらの国ではめっかちが王様だ」 いわゆる「差別用語」を使わない訳にするなら、「盲人の国では片目の者が王様だ」。 上であえて使用した「めっかち」とは、「片目しか見えない人」のことで、差別用語扱いされたためか死語となってしまいましたが、 しかし「片目しか見えない人」のことを一語で表す日本語がないのは不自由なので、田邊 (1959), p.112 ; 田辺 (1976), p.207 でも使われているこの訳語を採用しました。 こうすることで、原文に含まれる ro という音の反復による語調のよさを「め」で始まる二つの単語で再現できる気もします。 【諺の意味】「たいしたことのない人々の間では、多少ましな人はもてはやされる」、「まったく無知な人々の間では、乏しい知識しか持たない人でも天才扱いされる」。 【図版】この諺を題材にした19世紀の挿絵があります。 【日本の諺】「鳥なき里の蝙蝠(こうもり)」 「すぐれた者がいないところでは、つまらない者がわが者顔をしていばること」(『故事・俗信ことわざ大辞典 第二版』 p.986)



98:現代数学の系譜11 ガロア理論を読む
15/07/05 11:44:29.98 viMYoeuU.net
おっと間違った
こっちだ
URLリンク(detail.chiebukuro.yahoo.co.jp)
2009/1/1921:27:26
「鶏口となるも牛後となるなかれ」…とは、どういう意味ですか?また、読み方も教えてください。鶏口…けいこう?
牛後…ぎゅうこう?
ベストアンサーに選ばれた回答
happytea0801さん 2009/1/1921:47:43
鶏口牛後という四字熟語としても使います。けいこうぎゅうご と読みます。
昔の中国、秦が強大な力を持っていた時、諸国は連携して秦を叩くか、秦に降伏して秦の国の一部になるかを選ばなければならない状況になりました。
諸国の中には韓(かん)という国があり、韓の国主は大いに悩みますが、家来の蘇秦(そしん)という人が一言、「鶏口となるも牛後となるなかれ」。
秦という国の属国となるよりも(韓の王は秦王の家臣になるので)、小国の王のほうでいてください、韓は未だ強大で王も健在ならば、秦に屈するのは天下の笑いものですよとお願いしたわけです。
蘇秦はその後6カ国をまとめ上げて秦と対抗し、15年間もの間、平和な世を作りました(最終的には秦が中国を統一しますが)。
表現として適切ではありませんが、今風に言えば、大企業の一員(歯車)となるよりも、どんなに小さい会社でも社長のほうがいい、という意味でしょう。

99:現代数学の系譜11 ガロア理論を読む
15/07/05 11:46:28.13 viMYoeuU.net
数学ができない・・
といっても所詮相対的なものだ
自分の能力が生かせる、めくらの国・・・じゃなかった、鶏口となれる場所があると思うんだよね
それを考えなよ

100:132人目の素数さん
15/07/05 11:51:05.31 NF+6yVEz.net
>>85
ちんこの国へいけと?

101:岡村隆史「嫌なら見るな」
15/07/05 12:34:21.14 22uD/UkX.net
新聞購読を止めて、月3000~4000円、年間36000~48000円の節約
新聞にそのような金を払う価値はない
ただでさえ要らない
なぜなら新聞は国民の方を向いておらず、広告主のための報道しかしないからだ
それに金を払って購読することは自らの首を絞める自殺行為に等しい

102:現代数学の系譜11 ガロア理論を読む
15/07/05 12:35:36.25 viMYoeuU.net
>>83
めくらも・・、差別用語だと、言葉狩りか
URLリンク(blogs.yahoo.co.jp)
言葉狩り:めくらなどを差別用語と決めつけて変換ソフトから除外する業者 2014/7/11(金)
 最近、三島由紀夫著「金閣寺」を読み、その感想をブログに2度に分けて書いた。多分3度目を書いて完結すると思う。
そこで辞書検索などしていて、以前から不満に思っていたことを思い出した。それは、めくらと入力しても盲の字が出てこないし、かたわと入力しても片端がでてこないのである。
しかしつんぼと入力すれば聾が出てくる。
めくらの方が「盲蛇を怖じず」などでよく使うことから、どうやらめくらが差別用語であり聾は差別用語でないという線引きが何処かでなされているのだろう。
そして業者が一部の無知なる狂信者(左翼と呼ばれる人に多い)の批判を恐れて、変換候補から除外したのだろう。
 言葉は文化である。文化が変化してゆき、めくらがほとんど使われなくなった時に、盲という字が漢字変換で出てこなくなるのが自然な姿である。
何故、そのような一部の無知蒙昧の輩の批判を恐れて下らない自主規制をするのか?
 それは恐らく、日本国はサイレントマジョリティーの国だからである。つまり、どのような会社でも機関でも、声高に反対を叫ぶ人に遠慮して、多数意見をどうしても軽視してしまうのである。
 日本が、ものを言う多数派の国になることを強く希望する。

103:現代数学の系譜11 ガロア理論を読む
15/07/05 12:38:23.63 viMYoeuU.net
>>86
どうも。スレ主です。
まあ、それは君の判断に任せるよ

104:132人目の素数さん
15/07/05 12:57:08.10 4Jc9ox8u.net
>>89
キミはチンコの国が似合いそうだね

105:現代数学の系譜11 ガロア理論を読む
15/07/05 13:37:40.08 viMYoeuU.net
>>81
第2超局所解析は、戸瀬 信之先生の造語?
URLリンク(www.sciencedirect.com)
Algebraic Analysis: Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday,
Contents of Volume II, Pages xi-xiii PDF (321 K)
Second Microlocalization and Conical Refraction (II) Nobuyuki Tose P867
Algebraic analysis - Google Books books.google.com ? Mathematics ? Algebra ? General - (検索でP867の部分)

106:現代数学の系譜11 ガロア理論を読む
15/07/05 13:41:20.79 viMYoeuU.net
>>90
どうも。スレ主です。
君も数学ができないで悩んでいるのか?
ここは、スレ主が作った国なんだ
もし、君が片目の者と証明できれば、君が王様だよ
いかが?

107:132人目の素数さん
15/07/05 14:49:39.96 nFNHtEO5.net
>>91
>第2超局所解析は、戸瀬 信之先生の造語?
君、それは冗談で言ってるのかね?w

108:現代数学の系譜11 ガロア理論を読む
15/07/05 15:13:26.07 viMYoeuU.net
>>93
レスありがとう
いや、単純な話で、全く知らないんだ
が、第2超局所解析の日本語検索で戸瀬 信之、Second Microlocalizationの英語検索で、Toseがヒットするのでね
そう思ったんだ
ところで、"Microlocal"は、佐藤スクールの命名と思っているんだが、当たっているかい?
その流れで、第2超局所解析が戸瀬 信之先生の造語かと。なかなか良いセンスだと思ったが・・

109:132人目の素数さん
15/07/05 15:35:11.22 nFNHtEO5.net
中身を少し勉強すれば最初が戸瀬じゃないってことくらいすぐわかるんだがね・・・
創始者があっさりやめたあと戸瀬が拾っただだけ
Microlocalって用語がいつ生れたかは知らない
超局所解析というもの自体はかなり前からあるけど、言葉として
使われ始めたのは最初の論文から15年以上は後
中身は知ってるけど、誰が最初かって歴史物語には興味がないんでね
まあ、がんばってぐぐって貼ってください

110:現代数学の系譜11 ガロア理論を読む
15/07/05 19:24:31.73 viMYoeuU.net
>>95
どうも。スレ主です。
>中身を少し勉強すれば最初が戸瀬じゃないってことくらいすぐわかるんだがね・・・
おお、この国ではあんたが王だな
私は、戸瀬は勉強しても分からん
>創始者があっさりやめたあと戸瀬が拾っただだけ
戸瀬 信之先生は、>>81で「P. Laubin(LIEGE大)や私の研究」と書いている。なので、P. Laubin(LIEGE大)が創始者だね
ただ、問題は理論の創始者ではなく、だれのネーミングかなんだよね
>Microlocalって用語がいつ生れたかは知らない
佐藤幹夫がなにかに書いていたけど、日本のRIMS(京都)で国際会議があって、吉田耕作から「なにか講演しろ」と言われて、Microlocal(層C)を新幹線の中で計算したとか
えーと正確には、「佐藤幹夫の数学」(2014)P16かな
「マイクロ関数」という名前か
新幹線の中は、P16にはないね
「マイクロ関数」から、Microlocal(層C)になったように理解しているんだが・・

111:132人目の素数さん
15/07/05 22:51:54.30 rk0eH08u.net
余接空間がマイクロローカルな感じなの感じ取れないと。

112:132人目の素数さん
15/07/06 00:42:00.82 Rc5hK5a3.net
4次元ちんこ

113:現代数学の系譜11 ガロア理論を読む
15/07/10 22:15:09.39 ym/cJ7xn.net
どうも。スレ主です。
余接空間がマイクロローカルな感じ?
あんたも王の資格があるね

114:現代数学の系譜11 ガロア理論を読む
15/07/11 09:16:53.64 FKo26YYw.net
読み返してみると、>>35
URLリンク(ja.wikipedia.org)
超局所解析
「超局所」(microlocal)という語は、空間内の位置についての局所化のみならず、ある与えられた点の余接空間方向についての局所化を意味する。
(引用おわり)
なんて、書かれてあったりする。
まとまりなく、ランダムに書かせて貰うと
「超局所」(microlocal)がちょっとおかしい
micro=微 でしょ、普通
超=hyper, super or ultra だ
佐藤超関数=hyperfuction
マイクロ関数=Microfunction (hyperfuctionをより細かくした)だったのでは?
URLリンク(en.wikipedia.org)
In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order.
Hyperfunctions were introduced by Mikio Sato in 1958, building upon earlier work by Grothendieck and others. In Japan, they are usually called the Sato's hyperfunctions.
URLリンク(math.stackexchange.com)
Applications of Microfunctions asked Oct 31 '13 at 20:14
Can anyone suggest good (a) uses/applications or (b) construction of micro-functions (introduced by Mikio Sato in 1971) in analysis?
I am trying to understand the subject better. Suggestions of literature are very welcome, but also, how would one present the basic concept as conc


115:isely as possible if one had to?



116:現代数学の系譜11 ガロア理論を読む
15/07/11 09:37:01.33 FKo26YYw.net
これ分かり易いね
URLリンク(wik)まとめ.com/wiki/%E8%B6%85%E5%B1%80%E6%89%80%E8%A7%A3%E6%9E%90
超局所解析 - ウィキまとめ
[英microlocalanalysis仏analysemicrolocale独mikrolokaleAnalysis]
マイクロローカルアナリシス.
1変数の佐藤超関数f(x)が,xOの近傍でf(x)=F(x+i0)と表わすことができるとき,fは(xO,-idx∞)でマイクロ解析的であるといい,f(x)=F(x-i0)と表わせるときfは(xO,idx∞)でマイクロ解析的であるという.
(xO,-idx∞)および(xO,idx∞)でマイクロ解析的な佐藤超関数は,xOで実解析的である.
δ関数は,(0,-idx∞)でも(0,idx∞)でもマイクロ解析的でない.
このように,実解析性と特異性の間にマイクロ解析性という概念を設けることにより,佐藤超関数の特異性を詳しく調べることができる.
多変数の場合のマイクロ解析性は,余接球面束(cotangentspherebundle)の言葉で表現することができる.
佐藤超関数がマイクロ解析的でない余接球面束の部分集合を,特異スペクトル(singularspectrum)という.
特異スペクトルなどを用いて余接球面束の上で偏微分方程式を解析することを超局所解析といい,偏微分方程式の解の特異性の伝播やファインマン積分の解析性の研究に有効な数学の手法である.
佐藤超関数が,(シュワルツの意味の)超関数の場合,特異スペクトルは,波面集合(wavefrontset)ともいう.

117:132人目の素数さん
15/07/11 09:40:08.32 JOnsWxz2.net
スレ主さんちんこでかそう

118:現代数学の系譜11 ガロア理論を読む
15/07/11 09:50:40.37 FKo26YYw.net
関連
http://ウィキまとめ.com/wiki/%E3%83%AF%E3%82%A4%E3%83%88%E3%83%9E%E3%83%B3%E9%96%A2%E6%95%B0
ワイトマン関数 - ウィキまとめ
[Wightmanfunction]
ハイゼンベルク表示の場の演算子φ(x)(x=(r,t))の積の真空期待値〈Ω,φ(x1)…φ(x?)Ω〉として定まるx1,…,x?の関数(n=1,2,…)]]
Ωは系のハミルトニアンの最低固有値に属する規格化された固有ベクトルで,真空の状態ベクトルに当る]]ワイトマン関数は実際は関数ではなく超関数であると考えられている]]
1つの場の量子論において,これが与えられると,S行列が計算できる(→LSZ形式)フォック空間で作用する場の演算子を用いて摂動論など具体的な計算を進める形の場の量子論が発散の困難に阻まれるのを見て,
ワイトマン,A.S]]は1956年,場の量子論に期待される一般的な性質をワイトマン関数系の言葉で表わす研究を始めた]]
実際,超関数W?(x1,…,x?)の系が正値性など一連の性質をもてば,GNS構成法により適当なヒルベルト空間Hとその上の演算子φ(x)を構成してW?をワイトマン関数の形に表わすことができて(再構成定理),
W?の性質がHとφ(x)のつくる場の量子論に遺伝するのである(Hはフォック空間とは限らない]]
→ハーグの定理)
ワイトマン関数のもつ性質(したがってW?に要求される性質)は超関数であることのほか,
正値性,エルミート性など再構成定理の条件をなすもの,さらに場の演算子の相対論的変換性,局所可換性,状態Ωが最低固有値に属し相対論的不変でかつ一意であることなど,理論に望まれる物理的内容からくるものなどがあり,ワイトマンの公理系とよばれる
(→公理論的な場の量子論)
その公理系からワイトマン関数が相対座標xk+1-xkの超関数で,ある解析関数の境界値になっていることが導かれる]]
これによってワイトマン関数を相対時間について虚軸まで解析接続したものはシュウィンガー関数(Schwingerfunction)とよばれ,ユークリッド場の理論で中心的な役をする]]

119:現代数学の系譜11 ガロア理論を読む
15/07/11 09:52:07.09 FKo26YYw.net
>>102
客観的にはそうでもないと思うが、君よりはな・・・HaHaHa!

120:現代数学の系譜11 ガロア理論を読む
15/07/11 10:37:34.23 FKo26YYw.net
>>96
関連
URLリンク(phasetr.com)
書評:佐藤幹夫の数学: 2013-02-01
佐藤超関数の文脈で超関数の積分があるが, これは超関数微分方程式を考えて, その解を不定積分と呼んでいる.
興味がある向きは Theory of Hyperfunctions, I の P148 を見てほしい.
URLリンク(repository.dl.itc.u-tokyo.ac.jp)
タイトル: Theory of Hyperfunctions, I.
著者: Sato, Mikio
発行日: 1959年3月28日

121:現代数学の系譜11 ガロア理論を読む
15/07/11 10:47:34.58 FKo26YYw.net
>>105
「佐藤幹夫の数学」P264が「佐藤超関数と特異スペクトルとマイクロ関数」だ
ここに、マイクロ関数の佐藤幹夫流の直感的説明がある・・・

122:現代数学の系譜11 ガロア理論を読む
15/07/11 10:57:00.05 FKo26YYw.net
>>106
「佐藤幹夫の数学」P273が「超局所計算法(miclolocal calculus)」だ
"あるとき、「概均質ベクトル空間のフーリエ変換の話はきれいだけれども、実際の計算は全然できなくて、あれは抽象論だ」と新谷(卓郎)君から批判された"という話から始まる
柏原を説得して、論文にしてもらったと
”僕だったら1年も10年も放っといたと思うんだけれども、彼がやってくれたんでアッというまにできちゃったわけだよ”と

123:現代数学の系譜11 ガロア理論を読む
15/07/11 11:17:12.60 FKo26YYw.net
>>107
「佐藤幹夫の数学」P17
柏原先生の話がある
”彼はブルバキやグロタンディークなんかを18歳か19歳のときに読んでいました。それらを自分ひとりで、先生もいなくて、彼がまだ4年生であったときに勉強していたのです。
ええ、彼はものすごい天才です。今まで会った中で最高の若者です”と

124:現代数学の系譜11 ガロア理論を読む
15/07/11 11:28:10.01 FKo26YYw.net
>>97 余接空間の話は、>>35-39に書いたけど
実は、まだよく見えない
そこで、もう少し書くことに
1.まず接空間(英語:tangent space)
URLリンク(ja.wikipedia.org)
多様体上の接ベクトル空間(英語:tangent vector space)あるいは 接空間(英語:tangent space)とは、多様体上の各点で定義されるベクトル空間であり、その点における全ての接ベクトルの集合である。
接ベクトル空間は、ユークリッド空間内の曲線や曲面における接ベクトルの一般化ともいえる。
概要
接ベクトル空間は、多様体上の点ごとに定義されるベクトル空間である。
接ベクトル空間の元を接ベクトルという。全ての点で接ベクトルが定まっているとベクトル場というものが定義できる。ベクトル場は多様体の形を調べたり、多様体上の粒子の運動を調べたりするのに非常に役立つ概念である。
物理学でいえば電磁場や重力場などを記述でき、そのベクトル場の中に置かれた粒子はその点での接ベクトルの向いている方向に沿って移動していく。
本項目で扱うのは、そのベクトル場の基礎となるある 1 点の上の接ベクトル空間である。
局所座標系に依存しない速度ベクトルのようなものを探し求めた結果
微分作用素の一次結合(接ベクトル)を用いることで解決できる事が分かる。この接ベクトルの全体を接ベクトル空間という。
作用素をベクトルと呼ぶために、少し抽象的でわかりにくい話になるが、そういう場合は関数 f に具体的な形をいくつか与えてみて多様体の形を感じ取るのがよい。
定義
方向微分と接ベクトルについての定義を与える。接ベクトルは方向微分であるが、 方向微分が接ベクトルとは限らない。
滑らかな多様体の場合にのみ両者は一致するので、滑らかな多様体の話に限るのであれば方向微分の定義は接ベクトルの定義でもある。
(引用おわり)
まあ、物理でいうところの「場の理論」を抽象化したものでしょうか?

125:現代数学の系譜11 ガロア理論を読む
15/07/11 11:37:32.48 FKo26YYw.net
2.微分と余接
URLリンク(ja.wikipedia.org)
関数の微分
m 次元 C^r 級多様体 M とその上の点 p を考える。 p における 接ベクトル v は、 p の近傍で定義された C^r 級関数 f を実数 v(f


126:) に対応させる関数である。 v(f) は接ベクトル v と関数 f の組であり、 v を固定して、 f に対して値が定まると考えてきた。逆に f を固定して dfp : v → v(f) という関数も考えることができる。この dfp を f の p における 微分 (differential) という。 接ベクトルのなす空間 Tp(M) は R 上の線型空間であることから、 Tp(M) から R への線型写像のなす双対ベクトル空間 Tp*(M) = HomR( Tp(M) , R) が定まるが、 微分 dfp はこの Tp*(M) の元である。 Tp*(M) のことを M の p における余接ベクトル空間 (cotangent vector space) という。 特に p を含む座標近傍 (U;x1,…,xm) があるとき、関数 f として 局所座標系の成分の一つである xk を選べば、その p における微分は (dxk)p となり(略) ここに現れた dxk という記号は、微分形式として積分 ∫ f(x) dx に現れる dx と、しばしば同一視される。 通常の積分では∫と dx は、一組の記号でありそれぞれを別個の物として扱うことはできないが、各点で余接ベクトルとみなせば、 dx という記号に意味を持たせることができる。 各点に余接ベクトルを与えたものであるので、正確には余接ベクトル場を考えることになる。



127:132人目の素数さん
15/07/11 13:48:44.12 EkTPLFeM.net
>彼はブルバキやグロタンディークなんかを18歳か19歳のときに読んでいました。
>それらを自分ひとりで、先生もいなくて、彼がまだ4年生であったときに勉強していたのです。
この手の話、真に受けない方がいい。原理的には可能だが、ブルバキを読むのはすごく大変だよ。
読んで中身を理解する訳だろ。少しフランス語の素養が必要で、全部で30~40冊近くあるんだろ。
中にはいい本もあるが、初期に書かれた本は読むの大変。
グロタンディークは厳密なスタイルでないらしいが、本文については知らん。

128:132人目の素数さん
15/07/11 14:13:49.78 EkTPLFeM.net
>>109
接空間は、2次元平面上に描いた尖っていない滑らかな曲線の
グラフの接線を高次元化して一般化したモノなんです。
例えば、球コロの表面に下敷きを置いたらそれが球と下敷き
の接点の接ベクトルになる。紙に滑らかな曲線のグラフの接線
を引いても同様。直観的には大体こんな感じ。

129:132人目の素数さん
15/07/11 14:21:18.25 5aahM9mN.net
>余接空間の話は、>>35-39に書いたけど
>実は、まだよく見えない
>そこで、もう少し書くことに
スレ主が「書いた」のは
>>35-39
(なし)
>>109-110
>まあ、物理でいうところの「場の理論」を抽象化したものでしょうか?

130:現代数学の系譜11 ガロア理論を読む
15/07/11 15:35:07.98 FKo26YYw.net
>>111-112
どうも。スレ主です。
おっちゃんかな?
レスありがとう
>この手の話、真に受けない方がいい。原理的には可能だが、ブルバキを読むのはすごく大変だよ。
>読んで中身を理解する訳だろ。少しフランス語の素養が必要で、全部で30~40冊近くあるんだろ。
柏原の時代には訳本なかったっけ? えーと、下記だ一番早いので1968年か。だからまだ無かったか・・
URLリンク(ja.wikipedia.org)
邦訳された著作
『位相 第1』 森毅・清水達雄訳、東京図書〈ブルバキ数学原論 第12〉、1968年。
ブルバキの業績
ブルバキの主な業績は、7000ページ以上に及ぶ『数学原論』(Elements de mathematique) の執筆である。
元は微分積分学の現代的な教科書を書くのが彼らの目的だったが、作業が中途で肥大化し、その目的は捨て去られた。
最終的には集合論の上に現代数学を厳密かつ公理的に打ち立てることにその目標は向けられる。
彼らはそこで、代数構造・順序構造・位相構造という三つの構造概念、フィルターなどいくつかの新しい概念や術語を導入し、現代数学に大きな影響を与えた。
その完璧な厳密性と一般性を求める叙述はブルバキスタイルと呼ばれるようになる。
ブルバキの影響は年と共に次第に低下していった。
その理由の一つは、彼らの抽象化はそれだけではあまり有用でなかったためである。
今ひとつには、ブルバキの影響を受けた本が他にも出版されるようになり、ブルバキの本の独自色が失われつつあった。
またひとつには、重要と考えられるようになった別の抽象化、例えば圏論などをカバーしていないためでもある。
ブルバキのメンバーの一人アイレンベルグは圏論の創始者であり、グロタンディークも圏論を積極的に論じた。
だが圏論を導入するには、それまでに発表されてきたブルバキの著作に根本的な修正を与えなければならなかった。
そのため圏論についてのブルバキの著作は準備されていたものの、結局は書かれなかった。
(引用おわり)
つづく

131:現代数学の系譜11 ガロア理論を読む
15/07/11 15:43:39.49 FKo26YYw.net
>>114
つづき
>グロタンディークは厳密なスタイルでないらしいが、本文については知らん。
グロタンディークを読んでいるというのはあったかも
柏原は東大だから、図書には本があったろう
一つは、教養の第二外国語で仏語やれば、辞書くらい引ける
一つは、フランス留学も考えていたか、あるいは自分が学者としてやっていくには仏語は必要だと。だから、仏語の勉強も兼ねて読んだというのはありかも
実際に佐藤スクールで役に立つのは、グロタンディーク系の層理論だと思うけど
ブルバキの中身は知らないが、目次見るとそう思うよ

132:現代数学の系譜11 ガロア理論を読む
15/07/11 15:45:07.74 FKo26YYw.net
>>113
どうも。スレ主です。
レスありがとう
まあ、ここはおいらのメモ帳なんで、メモ(備忘録)を書いたんだよ

133:現代数学の系譜11 ガロア理論を読む
15/07/11 15:46:50.13 FKo26YYw.net
>>110 つづき
3.双対ベクトル空間
URLリンク(ja.wikipedia.org)
数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、英: dual vector space)あるいは単に双対空間(そうついくうかん、英: dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。
有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。
函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。
一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、
位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。
双対空間
体 F 上の任意のベクトル空間 V の(代数的)双対空間 V^? は V 上の線型写像 φ: V → F(すなわち線型汎函数)全体の成す集合として定義される。
集合としての V^? には、次の加法とスカラー乗法
φ + ψ(x) = φ(x) + ψ(x)
(a φ)(x) = a (φ(x))
(φ,ψ∈ V^*, x∈ V, a∈ F)
を定義することができて、それ自身 F 上のベクトル空間となる。この代数的双対空間 V^? の元を、余ベクトル(共変ベクトル)あるいは一形式と呼ぶこともある。
双対空間 V^? の元である汎函数 φ と V の元との対をしばしば括弧を用いて φ(x) = [φ,x][1] あるいは φ(x) = ?φ,x?[2]で表す。
この対の記法は非退化な双線型形式[3] [・,・]: V^? × V → F を定める。このとき、[,] は V^? とV との間に双対性を定める、V^? と V を双対にする、あるいは V と V^? の双対性を表す内積 (duality pairing) であると言う。

134:現代数学の系譜11 ガロア理論を読む
15/07/11 15:54:54.55 FKo26YYw.net
>>117 つづき
4.有限次元の場合
URLリンク(ja.wikipedia.org)
有限次元の場合
V が有限次元ならば、V? は V と同じ次元を持つ。V の基底 {e1, ..., en} から双対基底と呼ばれる特別な V? の基底を定義することができる。それは V 上の線型汎函数の集合 {e1, ..., en} で、係数 ci ∈ F の選び方に依らず
e^i(c_1 e_1+・・・+c_n e_n) = c_i (i=1,・・・,n)
を満たすものとして定義される(上付きの添字が冪を意味するものではないことに注意せよ)。特に、一つの係数を 1, 残りをすべて 0 とすることにより、関係式は
e^i (e_j) = δ_ij
に帰着される。ここに δij はクロネッカーのデルタである。
例えば V が座標平面 R2 でその標準基底 {e1 = (1, 0), e2 = (0, 1)} に選べば、e1, e2 は e1(e1) = 1, e1(e2) = 0, e2(e1) = 0, e2(e2) = 1 を満たす線型形式である。
特に Rn を実数を成分とする n-項「列」ベクトル全体の成す空間と見做すとき、その双対空間は典型的には実数を成分とする n-項「行」ベクトル全体の成す空間として書かれ、その Rn への作用が通常の行列の積によって与えられるものと見做すことができる。
V が平面上の幾何学的なベクトル(有向線分)からなる空間であるとき、V? の元の等位曲線は V の平行線の族からなる。
故に V? の元は直観的には平面を被覆する特定の平行線族と見做すことができる。
このとき、与えられたベクトルにおける汎函数の値を計算するには、そのベクトルが平行線族のどの線上にあるかを知るだけでよい。
イメージとしては、そのベクトルが何本の平行線と交わるかを数えればよいことになる。
より一般に、V を任意有限次元のベクトル空間とするとき、V? に属する線型汎函数の等位集合は V の平行超平面族であり、汎函数の各ベクトルにおける値はこれら超平面を用いて理解することができる[4]。

135:現代数学の系譜11 ガロア理論を読む
15/07/11 18:12:46.14 FKo26YYw.net
>>118 つづき
5.無限次元の場合
URLリンク(ja.wikipedia.org)
無限次元の場合
ベクトル空間 V が有限次元でない場合にも適当な無限集合 A で添字付けられる基底 eα は持つ[5]から、有限次元の場合と同様の構成によって、双対空間の線型独立な元の族 eα (α ∈ A) を作ることはできるが、これは必ずしも基底とならない。
例えば、有限個の例外を除く全ての成分が 0 であるような実数列全体の成す空間 R∞ を考えると、これは自然数全体の成す集合 N で添字付けられる標準基底、すなわち各 i ∈ N に対して ei は第 i-項が 1 で他はすべて 0 となるようなものを持つ。
R∞ の双対空間は全ての実数列からなる空間 RN である。数列 (an) の (xn) ∈ R∞ への作用は ∑anxn で与えられる(これは xn の非零項が有限個しかないことから有限和である)。R∞ の次元は可算無限だが、RN の次元は非可算である。
このような考察は任意の体 F 上の任意の[5]無限次元ベクトル空間に対して一般化できる。
基底 {eα : α ∈ A} を一つとって V を fα = f(α) は有限個の例外を除く全ての α ∈ A に対して 0 となるような写像 f: A → F 全体の成す空間 (FA)0 と同一視すれば、写像 f は V のベクトル
∑{α ∈ A} f_α e_α
と同一視される(f の仮定からこれは有限和だから意味を持ち、また基底の定義により任意の v ∈ V 箱の形に書ける)。
そして V の双対空間は A から F への写像全体の成す空間 FA に同一視される。実際、V 上の線型汎函数 T は V の基底におけるその値 θα = T(eα) によって一意に決定され、また任意の写像 θ: A → F ( θ(α) = θα) は
(数式がややこしいので略)
は加群の直積と直和に関する一般の場合の結果の特別の場合である。
従って無限次元のとき、代数的双対は必ずもとの空間よりも大きな次元を持つ。これは連続的双対の場合には無限次元の場合でももとの空間と同型となる場合があることと対照的である。

136:現代数学の系譜11 ガロア理論を読む
15/07/11 18:18:27.18 FKo26YYw.net
>>119 つづき
あとは、面白そうだが、佐藤と関係なさそうなので省略
URLリンク(ja.wikipedia.org)
双線型な乗法と双対空間
二重双対空間への単射
線型写像の転置写像
商空間と零化域
関連項目
双対性
逆格子: 結晶学における双対基底
ベクトルの共変性と反変性
参考文献
Bourbaki, Nicolas (1989), Elements of mathematics, Algebra I, Springer-Verlag, ISBN 3-540-64243-9
Halmos, Paul (1974), Finite-dimensional Vector Spaces, Springer, ISBN 0-387-900


137:93-4 Lang, Serge (2002), Algebra, Graduate Texts in Mathematics, 211 (Revised third ed.), New York: Springer-Verlag, ISBN 978-0-387-95385-4, MR:1878556 MacLane, Saunders; Birkhoff, Garrett (1999), Algebra (3rd ed.), AMS Chelsea Publishing, ISBN 0-8218-1646-2. Misner, Charles W.; Thorne, Kip S.; Wheeler, John A. (1973), Gravitation, W. H. Freeman, ISBN 0-7167-0344-0 Rudin, Walter (1991). Functional analysis. McGraw-Hill Science/Engineering/Math. ISBN 978-0-07-054236-5. edit



138:現代数学の系譜11 ガロア理論を読む
15/07/11 18:29:42.68 FKo26YYw.net
>>117 関連
あとは、面白そうだが、佐藤と関係なさそうなので省略
URLリンク(ja.wikipedia.org)
テンソル(英: tensor, 独: Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。
しかし、テンソル自身は、特定の表示系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。
例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。
物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。
いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。
テンソルの応用と重要性
テンソルは、物理学や工学において重要な位置を占めている。例えば、拡散テンソル画像では、さまざまな方向への臓器の水に対する微分透過率を表すテンソル量を用いて、脳の走査像が構成される。
おそらく工学でテンソルが最も活用されているのは応力テンソルとひずみテンソルだろう。これらは2階のテンソルで、4階のテンソルである弾性テンソルによって一般の線型的な素材に関連づけられている。
とくに3次元の物体中の応力を表す2階のテンソルは3次の正方行列によって成分を表示することができる。
物体の中の立方体状の無限小体積要素について3方向の面それぞれ(向かい合う面どうしは十分近いので同一視される)に一定の力がかかっていて、力は3つの方向の要素を持っている。
したがって3×3、つまり9個の成分によってこの立方体状無限小体積要素(最終的には点と見なされる)における応力が記述される。物体の境界内にはこの応力が(場所によって異なった値をとりながら)分布しており2階のテンソル(場)が考えられることになる。
抽象的なテンソルの理論は今では多重線型代数と呼ばれる線型代数の一分野になっている。
つづく

139:現代数学の系譜11 ガロア理論を読む
15/07/11 18:34:42.80 FKo26YYw.net
>>121 つづき 訂正:”あとは、面白そうだが、佐藤と関係なさそうなので省略”は、消し忘れです
URLリンク(ja.wikipedia.org)
歴史
テンソルという言葉は、1846年にウィリアム・ローワン・ハミルトンによって特定の種類の代数系(やがてクリフォード代数として知られるようになる)におけるノルム操作を記述するために導入された。
現在の意味で使われるようになったのは1899年のヴォルデマール・フォークトからである。
テンソルの記法は1890年ごろにグレゴリオ・リッチ=カルバストロによって絶対微分という名の下に発展させられ、トゥーリオ・レヴィ=チヴィタによる1900年の古典的な同名の著作によって多くの数学者たちに知られるようになった。
20世紀に入ってからはこの分野はテンソル解析として知られるようになり、1915年頃のアルベルト・アインシュタインによる一般相対性理論の導入によって広く知られるようになった。
一般相対性理論は完全にテンソルの言葉を用いて定式化される。アインシュタインは苦労の末にマルセル・グロスマンから[1] (あるいはレヴィ=チビタ自身から) テンソルの理論を学んだとされている。
テンソルは連続体力学など他の分野でも使われている。
つづく

140:現代数学の系譜11 ガロア理論を読む
15/07/11 18:38:23.30 FKo26YYw.net
>>122 つづき
URLリンク(ja.wikipedia.org)
いくつかのアプローチ
古典的な方法ではテンソルは多次元の配列で、階数0のスカラーや階数1のベクトル、階数2の行列などの階数nへの一般化を与えているものと見なされる。
テンソルの「成分」は配列の要素の値によって与えられることになる。この考えはテンソル場として一般化され、テンソルの成分として関数やその微分が取り扱われるようになる。
物理学における通常のテンソルの定義の仕方は、特定の規則に従って成分が変換されるような対象という言い方を用いるもので、共変変換(英語版)と反変変換(英語版)の概念がもちいられる。
現代的な(成分を使わない)アプローチではテンソルはまず抽象的に多重線形性(英語版)の概念にもとづく数学的対象として定義される。
よく知られているような諸性質が線型写像としての(あるいはもっと一般的な部分についての)定義から導かれる。テンソルの操作規則は線形代数から多重線形代数への拡張の中で自然に現れる。
数学における普通のやり方では、ある種のベクトル空間を用いて、必要なときに基底を考えるまでは特に座標系を指定しないようにされる。
例えば共変ベクトルは一次微分形式として説明できるし、あるいは反変ベクトル空間の双対空間の元として説明することもできる。
現代流の成分によらないベクトルの概念によって、成分表示にもとづく伝統的な(しかし、初学者にベクトルの概念がどんなものかを教えるには有効な)取り扱いが置き換えられるように、
この取り扱いは成分にもとづく取り扱いをより高度な考え方によって置き換えることを目的としている。
「テンソルはテンソル空間の元のことなのだ」という標語を掲げることもできるだろうが、高階のテンソルに対して幾何的な解釈をどう与えるかという難しさもあって、成分表示によらないアプローチが支配的になったというわけではない。
物理学者や技術者たちはベクトルやテンソルが(勝手に選べてしまうような)座標系に左右されない概念としての重要性を認識した。
同様に、数学者たちは座標表示することで簡単に導けるようなテンソルの関係があることを見いだしている。
つづく

141:現代数学の系譜11 ガロア理論を読む
15/07/11 18:43:27.06 FKo26YYw.net
>>123 つづき
URLリンク(ja.wikipedia.org)

テンソルは添字の組に対して対応する成分の値を与えるような関数によって表されていると考えることができる。それぞれの添字について何通りの自由度があるかという数は次元とよばれることがある。
例えば階数3で次元2、5、7のテンソルを考えることにすると、添字の組は<1, 1, 1> から <2, 5, 7>まで動き、70通りの添字の組があることになる。
テンソル場は多様体の各点にテンソルを与えたものである。従って次元が <2, 5, 7> のベクトル場を考えるときは、上の例のようにして単に70個の値を考える代わりに空間内のそれぞれの点が70個の値を付与されることになる。
言い方を変えれば、問題にしている空間を定義域としてテンソルに値を持つ関数を考えることになる。
線形でないような関係もあるが、たいていの関係は微分可能性を満たしており、局所的には多重線形写像を足しあわせたもので近似できる。従って物体の解析に際してたいていの量はテンソルとして表示すると取り扱いが便利になる。
工学では剛体�


142:笳ャ体内の応力がテンソルによって説明される。実際のところ「テンソル」という言葉はラテン語の「延びる物」、つまり応力を発生するもの、という意味の言葉からきている。 物体内の特定の面要素に特に注目して考えれば、面の一方の側にある物質が反対側に対して力をおよぼしていると考えられる。 幾何におけるテンソルでは二次形式や曲率テンソルが有名である。 実際のところテンソルの概念はとても一般的なものであり、上の例全てに当てはまっている。つまり、スカラーやベクトルはテンソルの特別なものと見なすことができる。



143:現代数学の系譜11 ガロア理論を読む
15/07/11 19:02:36.71 FKo26YYw.net
>>109 つづき
大分脱線しましたが、お待たせしました余接束
URLリンク(ja.wikipedia.org)
数学、特に微分幾何学において、滑らかな多様体の余接束 (cotangent bundle) は多様体のすべての点におけるすべての余接空間からなるベクトル束である。
それはまた接束の双対束として記述することもできる。
目次
1 余接層
1.1 余接層の定義
1.2 多様体における反変性
2 相空間としての余接束
2.1 自然 1-形式
2.2 斜交形式
2.3 相空間
3 関連項目
4 参考文献
余接層
余接束の滑らかな断面は微分 1-形式である。
余接層の定義
M を滑らかな多様体とし M × M を M の自身とのカルテジアン積とする。
対角写像 Δ は M の点 p を M × M の点 (p, p) に送る。Δ の像は対角線 (diagonal) と呼ばれる。I を対角線上消える M × M 上の滑らかな関数の芽の層とする。
このとき商層 I/I^2 はより高次の項を法として対角線上消える関数の同値類からなる。余接層はこの層の M への引き戻し(英語版)である。
Γ T^*M=Δ^*(I/I^2).
テイラーの定理によって、これは M の滑らかな関数の芽の層に関して加群の局所自由層である。したがってそれは M 上のベクトル束、余接束 (cotangent bundle) を定義する。
多様体における反変性
多様体の滑らかな射 φ: M → N は M 上の引き戻し層(英語版) φ^*T^*N を誘導する。ベクトル束の誘導される写像(英語版) φ^*(T^*N) → T^*M が存在する。
つづく

144:現代数学の系譜11 ガロア理論を読む
15/07/11 19:09:55.44 FKo26YYw.net
>>125 つづき
URLリンク(ja.wikipedia.org)
余接束は自然 1-形式 (tautological one-form) θ(Poincare 1-形式あるいは Liouville 1-形式とも呼ばれる)をもっている。
)これが意味するのは、T*M をそれ自身多様体と見たときに、T*M 上のベクトル束 T*(T*M) の断面が存在するということである。
この断面はいくつかの方法で構成することができる。最も初等的な手法は局所座標 (local coordinates) を使うことである。
xi を基礎多様体 (base manifold) M 上の局所座標系とする。これらの基礎座標系の言葉で言うと、ファイバー座標系 pi が存在する: T*M の特定の点における 1-形式は(アインシュタインの縮約記法を使って)pidxi の形をしている。
なので多様体 T*M はそれ自身局所座標 (xi, pi) をもっている、ただし x は基礎上の座標で p はファイバーにおける座標である。自然 1-形式はこれらの座標系において

によって与えられる。本質的には、T*M の各固定された点での自然 1-形式の値は引き戻し(英語版)として与えられる。具体的には、π: T*M → M を束の射影 (projection) としよう。
Tx*M の点を取ることは M の点 x と x における 1-形式 ω を選ぶことと同じであり、

つまり、余接束の接束におけるベクトル v に対して、自然 1-形式 θ の (x, ω) における v への適用は v を dπ: TT*M → TM を使って x における接束に射影し ω をこの射影に適用することで計算される。
自然 1-形式は基礎 M 上の 1-形式の引き戻しではないことに注意する。
相空間
多様体 M が力学系における可能な位置の集合を表していれば、余接束 T*M を可能な位置と運動量の集合と考えることができる。例えば、これは振り子の相空間を記述する方法である。
振り子の状態は、その位置(角度)と、その運動量(あるいは同じことだが、その速度、なぜならばその質量は変わらないから)によって決定される。全状態空間はシリンダーのように見える。
シリンダーは円の余接束である。上の�


145:Vンプレクティックな構成は、適切なエネルギー関数と一緒に、系の物理の完全な決定を与える。 より多くの情報はハミルトン力学を、動きのハミルトニアン方程式の明示的な構成は en:geodesic flow の記事を参照。



146:現代数学の系譜11 ガロア理論を読む
15/07/11 19:28:13.50 FKo26YYw.net
補足
・束:代数では、Lattice(格子)なんだが、幾何ではbundle(たばの束)。余接たば、とは言えないだろうね
・”T*M をそれ自身多様体と見たときに、T*M 上のベクトル束 T*(T*M) の断面が存在する”
 M:manifold 【機械】 (内燃機関の吸排気をする)マニホールド,多岐管.
 T:【形容詞】接する,接線の; 〔…に〕接して 〔to〕. 【名詞】【可算名詞】【数学】接線,接面. タンジェント,正接 《略 tan》.
 co-:
1 「共働で」「共に」∥co-operate.
2 「同程度に」「等しく」∥coextensive.
3 「相棒」「パートナー」∥coauthor.
4 「代理」「補助」∥copilot.
5 《数学》《天文》「余」「補」∥cosine.
URLリンク(dictionary.goo.ne.jp) 辞書 英和辞書 goo

147:現代数学の系譜11 ガロア理論を読む
15/07/11 20:54:18.74 FKo26YYw.net
>>127 補足
co- 《数学》《天文》「余」「補」∥cosine.
なのだが
dual-双対ベクトル空間的見方もありか
ああ、「断面」だったね
URLリンク(ja.wikipedia.org)
断面 (位相幾何学)
(断面 (ファイバー束)から転送)
位相幾何学の分野におけるファイバー束の断面(だんめん)あるいは切断(せつだん、英: section)若しくは横断面 (cross-section) とは、底空間をファイバー束の中に実現する写像或いはその像をいう。
目次
1 導入
2 局所切断と切断の層
3 大域切断と特性類
4 滑らかな切断
5 関連項目
6 参考文献
7 外部リンク
導入
切断というのは函数のグラフのある種の一般化である。函数 g: B → Y のグラフは、B と Y の直積 E = B × Y に値を持つ写像
s : B → E; x → s(x) = (x,g(x)) ∈ E
に同一視することができることに注意しよう。ここで π: E → B を直積の第一成分への射影、つまり π(x,y) = x を満たすものとすれば、「グラフ」は π(s(x)) = x を満たす写像 s の総称と捉えることができる。
位相空間 B を底空間とするファイバー束 π: E → B について、その切断とは連続写像 s: B → E であって、B の各点 x において必ず π(s(x)) = x を満たすものをいう。
これは「切断とはすべてのファイバーの各々について点をひとつずつ選ぶことによって定まる写像のことである」といっても同じである(条件 π(s(x)) = x は単に底空間 B の各点 x に対して対応する点 s(x) は x 上のファイバーからとるという意味になることに注意)。
例えば E がベクトル束のとき、E の切断とは B の各点 x で x をそれに付随するベクトル空間 Ex の元に対応させるものである。
特に、可微分多様体 M 上のベクトル場というのは M の各点にその点における接ベクトルを選んで対応付けるものであるから、ベクトル場とは M の接束の切断のことであると言うことができる。同様に M 上の一次微分形式 (1-form) は余接束の切断と言い換えられる。
つづく

148:現代数学の系譜11 ガロア理論を読む
15/07/11 21:00:26.67 FKo26YYw.net
>>128 つづき
URLリンク(ja.wikipedia.org)
局所切断と切断の層
ファイバー束はその底空間全域で定義される切断(大域切断、global section)を一般には持たないが、それゆえ局所的にのみ定義される切断というものを考えることも重要である。
ファイバー束 (E, π, B) の(連続な)局所切断 (local section) とは、U を底空間 B の開集合とするときの連続写像 s: U → E であって、束射影 π について U のすべての元 x に対して π(s(x)) = x をみたすようなものを言う。
(U, φ) が E の局所自明化(つまり F をファイバー�


149:ニして φ が π?1(U) から U × F への同相写像を与えるもの)とするとき、U 上の局所切断は常に存在して、それは U から F への連続写像と一対一に対応する。 このような局所切断の(U を任意に動かすときの)全体は底空間 B 上の層を成し、ファイバー束 E の切断の層 (sheaf of sections) と呼ばれる。 ファイバー束 E の開集合 U 上の連続(局所)切断全体の成す空間はときに C(U,E) とも表され、また E の大域切断全体の成す空間はしばしば Γ(E) や Γ(B,E) と表される。 大域切断と特性類 切断はホモトピー論や代数的位相幾何学で扱われるが、そこでは大域切断が存在するか否か、存在するとすればどのくらい存在するかといったことが主要な研究目的の一つであり、層係数コホモロジーや特性類の理論が展開される。 例えば、主束が大域切断を持つ必要十分条件はそれが自明束となることである。 また例えば任意のベクトル束は必ず零切断と呼ばれる大域切断を持つが、至る所消えないような切断を持つのはそのオイラー類が零である場合に限られる。 滑らかな切断 (特に主束やベクトル束の)切断は微分幾何学においても非常に重要な道具である。 この場合は底空間 B が滑らかな多様体 M で、全空間 E が M 上の滑らかなファイバー束(つまり、E は滑らかな多様体で束射影 π: E → M は滑らかな写像)であるものと仮定するのが普通である。 このような設定のもとでは、開集合 U 上の E の滑らかな切断全体の成す空間 C∞(U,E) を考えることができる。 関連項目 ファイバー付け (Fibration) つづく



150:現代数学の系譜11 ガロア理論を読む
15/07/11 21:02:19.47 FKo26YYw.net
>>129 つづき
図がある
URLリンク(ja.wikipedia.org)
図:束 p: E → B の切断 s は底空間 B と E の部分空間 s(B) とを同一視する方法を与える。
図:R2 におけるベクトル場の例。接ベクトル束の切断とは、実はベクトル場のことである。
おわり

151:現代数学の系譜11 ガロア理論を読む
15/07/11 21:10:23.18 FKo26YYw.net
>>130 つづき
ファイバー束
URLリンク(ja.wikipedia.org)
ファイバー束(ファイバーそく、fiber bundle、 fibre bundle)とは、位相空間に定義される構造の一つで、局所的に 2 種類の位相空間の直積として表現できる構造の事である。
目次
1 概要
2 定義
2.1 束(バンドル)
2.2 座標束
2.3 ファイバー束
3 切断
4 ファイバー束の例
4.1 自明束
4.2 メビウスの輪
4.3 クラインの壺
4.4 被覆写像
4.5 ベクトル束と主束
4.6 球面バンドル
4.7 写像トーラス
4.8 商空間
5 関連項目
6 参考文献
概要
単位円 S1 と線分 I = [0, 1] の直積 S1 × I は円柱の側面になる。
円柱の側面と似たような図形にメビウスの輪がある。局所的には S1 の一部と線分 I = [0, 1] の直積に見えるが、全体的には円柱と異なる図形になっている。このような局所的に直積として書けるという性質(局所自明性)を持った図形を扱うのがファイバー束の概念である。
この場合の S1 を底空間といい、線分 I をファイバー(繊維)という。ファイバーを底空間に沿って束ねたとき、上の例の円柱のように全体としても直積になっていれば、その全体を自明束(じめいそく)という。
自明束は基本的なファイバー束ではあるが、むしろ、メビウスの輪のように自明でないファイバー束の構造がどのようになっているのかといったことが重要である。
ファイバーはただ束ねられるだけではなく、構造群と呼ばれる位相変換群に従って張り合わされる。
底空間の開被覆 {U}a∈A があり、その 2つの元の共通部分 Ua ∩ Ub が空でないとき、その共通部分に立っているファイバーはどのように張り合わされるべきか?という事、すなわち、直積 Ua × F と Ub × F の重なり方を記述するのが構造群である。
ファイバー束の概念は、ホイットニーに始まる。
ホイットニーは多様体上のベクトル場から接ベクトル空間をファイバーに持つ接ベクトル束を構成し、その一般化としてファイバー束に到達した。

152:現代数学の系譜11 ガロア理論を読む
15/07/11 21:13:59.42 FKo26YYw.net
>>109
>実は、まだよく見えない
>そこで、もう少し書くことに
まだ、もやっとしているんだが
一気に分かるところまで行かない
まあ、気長にやりましょう!

153:現代数学の系譜11 ガロア理論を読む
15/07/11 21:25:03.51 FKo26YYw.net
>>111
14歳でのドリーニュ伝説がある
URLリンク(ja.wikipedia.org)
ピエール・ドリーニュ(Pierre Deligne、1944年10月3日 - )はベルギーの数学者。
14歳でニコラ・ブルバキの数学原論を読みこなしていたドリーニュは、ブリュッセル自由大学─大学に入るころは既に大学の数学をすべて終えていたとのこと。─と高等師範学校で数学を学び、23歳でIHESの客員教授、26歳でIHES教授、34歳のときフィールズ賞を受賞。
そのドリーニュが師事したのが、アレクサンドル・グロタンディークである。
彼はグロタンディークが数学をしていた間はグロタンディークに忠実であったが、グロタンディークが数学をやめた後は、グロタンディークのプログラムよりヴェイユ予想の早期の解決に向かい、1974年ヴェイユ予想を解決した。
自らのプログラムが放棄(埋葬)されたことに激怒したグロタンディークはドリーニュを激しく非難した。現在ドリーニュは1988年にグロタンディーク還暦記念論文集を刊行するなど和解に向けて努力している。
2013年にアーベル賞を受賞。
業績
Weil予想の解決。
ラマヌジャン予想の解決。
ヒルベルトの第21問題(Riemann-Hilbert問題)の解決。[疑問点 ? ノート]
デヴィッド・マンフォードとの共同研究でモジュライ空間のコンパクト化。
ジョージ・ルスティックとの共同研究で幾何学的な既約表現の構成、既約表現の分類。
Hodge関係の仕事
Hodge分解の代数的証明。
Deligneのホッジ理論。
"重さ"の哲学。
ザリスキ予想の解決。
Deligne-Griffiths-Morgan-Sullivanでのケーラー多様体の仕事 。
ふたつの変形量子化の間の相対コホモロジーの導入。
Beilinson-Deligne、ほか。
受賞歴
1978年 - 国際数学者会議フィールズ賞
1988年 - スウェーデン王立アカデミークラフォード賞
2004年 - バルザン財団バルザン賞:数学における様々重要な分野(代数幾何学、代数的および解析的整数論、群論、トポロジー、グロタンディークのモチーフ)での貢献。新しい強力な道具によって有限体上のリーマン仮説(ヴェイユ予想)を証明。
2013年 - アーベル賞

154:現代数学の系譜11 ガロア理論を読む
15/07/11 21:39:00.32 FKo26YYw.net
>>111
柏原伝説
URLリンク(phasetr.com)
『天才数学者がどうの』とかいう地獄のような記事を見た数学者の反応を記録する
抜粋
@ken_m123 タオでなくても、堀川穎二さんの「俺は日本で一番頭がいいと思ったら上がいた。柏原正樹だ」程度のネタで十分だと思います。 が、堀川さん早く亡くなられましたからね。#今回は実名にする
柏原先生, 小平先生と飯高先生とか何かその辺の対談みたいなやつで, 「レポートで何か凄まじいの出してきた学生がいたが, その学生が柏原君だった. 」,
「あまりに凄いから柏原君に優を出すのは当然として, その他の学生を優にするわけにはいかないから他の学生の成績下げちゃった」みたいな話があったように記憶している.
柏原先生, その他にも修論がいまだに引用されるとか何とかで本当にやばい.

155:現代数学の系譜11 ガロア理論を読む
15/07/11 21:56:05.28 FKo26YYw.net
>>134
>柏原先生, その他にも修論がいまだに引用される
その話、「佐藤幹夫の数学」P17 柏原先生の話で
D加群についての論文で、鉛筆で書かれた手書きのやつだとか
それを、わざわざ英訳して出版した人がいるという
検索すると下記がヒット 引用元 199
URLリンク(archive.numdam.org)
MASAKI KASHIWARA
Algebraic study of systems of partial differential equations.
(Master’s thesis, Tokyo University, December 1970.
Translated by Andrea D’Agnolo and Pierre Schneiders.
With a foreword by Pierre Schapira)
Memoires de la S. M. F. 2eserie, tome 63 (1995), p.-XIV+1-72.
<URLリンク(www.numdam.org)

156:現代数学の系譜11 ガロア理論を読む
15/07/12 05:38:43.15 si4MyG9v.net
>>95
がんばってぐぐったよ
URLリンク(archive.is)
archive.is Saved from URLリンク(www.iis.it-hiroshima.ac.jp) (リンク切れ 広島大の大川さん?)
An Invitation to the Theory of Hyperfunctions: (現在作成途中, Last Update 2011/08/17)
(抜粋)
distribution の知識は,もちろんあったほうが良いが,余り前提としないで書く。なお, 「超函数」は,岩村聯(いわむら つらね)が作った訳語。
(実)解析函数の層が A で表されている。 hyperfunction の層 B の導入の約 10 年後,佐藤は microfunction の層 C を導入した。 そして「佐藤の基本定理」を示した。
これには柏原の深い寄与があると言われるが,柏原はきわめて独創的な秀才中の秀才だから,そんな事にはこだわらない。
佐藤は。ほぼ同時に,河合,柏原との共同研究で,micro-local analysis の理論を創始した。
(現在では, microlocal analysis と言われる。
又,佐藤-Bernstein polynomial b(x) 等具体的計算を含む物は, microlocal calculus と言われる。)
文献(佐藤-河合-柏原 : Microfunction and Pseudo-differential Eqations, Lecture Note in Mathematics, No.287, Springer, 1973, pp 265-529)参照。この基本的文献は略して SKK と呼ばれる。
東大にあったその書物は,多くの人がコピーしたので,(僅かの期間内に)既にバラバラになっていた。
初期値問題は導来圏の概念を使って極めて一般的な形に定式化され,又,解の特異性とその伝播については,量子化接触変換(又は量子化シンプレクティック変換)によって,より調べやすい形になった。
つづく 👀
Rock54: Caution(BBR-MD5:1322b9cf791dd10729e510ca36a73322)


157:現代数学の系譜11 ガロア理論を読む
15/07/12 05:44:14.85 si4MyG9v.net
>>136 つづき ”Rock54: Caution(BBR-MD5:1322b9cf791dd10729e510ca36a73322”?
物理的解釈とも関係が深く,偏微分方程式の解の接続に関する Holmgren の定理は,方程式とは無関係な,より一般な形で, hyperfunction の台と singular spectrum の関係に関する一定理と言う形に一般化された。
これは microlocal 因果律と解釈されている。
microfunction は勿論佐藤の造語で,適当な日本語訳がない。
なお,層 C は, S*M 上でと T*M
(といってもこれらは普通の位相と違って, Hausdorff でない。
特に後者は,可換環論や代数幾何で現れる Spec(R) が,最低限の公理である T0 分離公理を満たすのに対して,この場合, T0 ですらない。凸錐を考えると便利だからである。)
上で考える場合と 2 通りあるが,前者は flabby sheaf となるが,後者はそうでない (これが因果律の所以である)。
T*M 上で考える場合は, C ^ と書くこともある。環層 E ∞ , E R , も両者で定義でき,この場合,考えている底空間は, M は複素解析的多様体でよい。
これらの環層は芽の環がネーター環でもなく,更に E R (の芽の環)は零因子も含む複雑な環層なので,O X のような単純な代数的議論は難しい。
E は当然 D の次に来る物として記号が与えられた。 symbol が一つの手がかりである。
※ micro-local なる言葉を最初に発案したのは河合らしい。後述の holonomic system と言う言葉は佐藤が作った。
最初は maximally overdetermined system, 極大過剰決定系(どちらも佐藤による。)だった。

158:132人目の素数さん
15/07/12 05:58:57.82 RltdaVf0.net
>>114-115
まあ、書いたのはおっちゃんですよ。そもそも、微分積分には出発点となる
デデキントの公理や平均値の定理とか、幾つかの同値な命題が理論展開の中で
出て来るようになっていて、微分積分の現代的なテキストを書く構想が無謀だったと。
その途中で集合論を基礎にして代数とかが厳密化されて行ったと。そういうこと。
位相の部分を見るとよく分かる。ここでフィルターとかは出て来る。
>>133について、ドリーニュは、語学的弊害が少なく幼いときからフランス語でブルバキを読める
環境にあって、当時はまだ全巻出版されてなく、不可能ではないでしょう。
ただ、14歳で「読みこなしていた」だと「全部読んで理解していた」ことになるが、
本当かはどうかまでは分からない。何しろブルバキは抽象論が主体なのでね。
>>134-135は本当。
論文は、言語は日本語、ノートに鉛筆でもよい訳ね。
まあ、当時は主なボールペンのインクは水性だったようだし、そりゃそうでしょう。
普通、ボールペンや万年筆は、「鉛筆」ではなく「ペン」というでしょう。 
鉛筆でダメだとすると、戦時中の人は何で論文書いたのか? という問いが生じる。
論文は言語は日本語、ノートに鉛筆、これ書き易い。複雑な式や図はフリーハンドに尽きる。
昔は日本語のジャーナルもあった。私もそうしようとは思っているのだが、
ただ、書いたノートを誰に送ればいいのかが分からない。

159:現代数学の系譜11 ガロア理論を読む
15/07/12 06:04:31.21 si4MyG9v.net
ついで
URLリンク(blog.livedoor.jp)
きまぐれ日記 2014年06月14日10:09 加群/D加群関連の資料
加群/D加群関連の資料。備忘録。
D-加群代数の Picard-Vessiot 理論 URLリンク(www.math.tsukuba.ac.jp)


160:/D-module_algebras.pdf 2004年度 応用数学緒論2、応用数学特論2 講義ノート http://siva.cc.hirosaki-u.ac.jp/usr/mnishi/note/note20042.pdf 佐藤超関数論と代数解析への招待 http://ohkawa.cc.it-hiroshima.ac.jp/math/hyperfunction.htm Serre と Hazewinkel による局所類体論についての注意 http://www.math.sci.osaka-u.ac.jp/~ochiai/ss2009proceeding/SS2009_Suzuki_emb.pdf 代数 http://research.kek.jp/people/hkodama/Math/algebra.pdf 代数学の参考書リスト http://www.geocities.co.jp/CollegeLife-Lounge/1030/math/algref.html 簡素にして不可解 http://blogs.yahoo.co.jp/yhakrymd/64580605.html 加群について http://www.wakayama-u.ac.jp/~morisugi/lecture/topology/kagun.pdf 戸田格子とD加群について http://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/0694-01.pdf 量子旗多様体上の D 加群 http://www2.kobe-u.ac.jp/~mhsaito/agsymkobe07/proceedings/tanisaki.pdf D加群の表現論への応用 https://www.jstage.jst.go.jp/article/emath1996/1998/Autumn-Meeting1/1998_Autumn-Meeting1_61/_pdf 加群 http://www.math.titech.ac.jp/~kawachi/maths/2005/Algebra/module.pdf 準ツイスターD加群の研究 日本学士院 http://www.japan-acad.go.jp/pdf/youshi/101/mochizuki.pdf こちら http://www.iwanami.co.jp/moreinfo/0056510/img/0056510.pdf 望月拓郎氏講演その2 http://www.ostec.or.jp/pln/pri/kagaku/mochizuki.pdf



161:現代数学の系譜11 ガロア理論を読む
15/07/12 06:09:09.23 si4MyG9v.net
>>138
どうも。スレ主です。
やはり、おっちゃんですね
レスありがとう
また書いてね

162:現代数学の系譜11 ガロア理論を読む
15/07/12 08:05:27.41 si4MyG9v.net
ついで
URLリンク(www.kurims.kyoto-u.ac.jp)
List of Publications @kashiwara

163:132人目の素数さん
15/07/12 08:10:52.10 HJ0jnLAu.net
  ,,,,  ,lllllllllllllllllllllllllllllllllllllllll       ,,,ll,,,   lllll,,,  ,llllllll
 llllllll,, lllllll'lllllllllllllllllllllllll''lllllll       ''lllllll,  'llllll' ,,lllllll'        lllllllllllllllllllllllllllllllllllllll,,
  ''lllll'' lllll' lllllllllllllllllllllllll llllll'   llllllllllllllllllllllllllllllllllllllllllllllllllllll     ''''''''''''''''''''''''lllllllllll'''
       ,llllllllllllllllllllllllllllllll     llllllll ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, lllllll         ,,,llllllll''
 ,,,,,,,,,,,  lllllllllllllllllllllllllllllllll     ''''''' llllllll''''''''''''''''''llllllll '''''''          ,,,llllllll'''
'llllllllllllll  lllllll''''''llllll'''''''lllllll         lllllllllllllllllllllllllllllllll          ,,,lllllllll''
   llllll  lllllllllllllllllllllllllllllllll         '''''''''''''lllllll'''''''''''''           ,,,llllllll''
   llllll ,,,,,,,,,,,,,,,,lllllll,,,,,,,,,,,,,,,,,     lllllllllllllllllllllllllllllllllllllllllllll     ,,llllllll''        ,,,,,,,,
  ,,,lllllll,l''''''''''''''''llllll'''''''''''''''''     lllllll'''''''''''''''''''''''''''''''lllllll       ,llllllll,,,          ,,,lllllll'
'llllllllll''lllllllllllll,,,,,,,lllllll,,,,,,,,,,,,,,,,,,,   llllllllllllllllllllllllllllllllllllllllllllll      '''llllllllllllllllllllllllllllllllllllllllll''
 ''''   '''''''''''''''''''''''''''''''''''''''''     llllllll'''''''''''''''''''''''''''''''llllll'

164:現代数学の系譜11 ガロア理論を読む
15/07/12 08:25:10.97 si4MyG9v.net
>>141 ついで
リスト中、下記が分かり易いかも(私は分からんが)
LECTURES GIVEN AT THE UNIVERSITY OF BERN IN JUNE 1984 だから
外国の大学での講義用だから、コンパクトにまとめているように思う
URLリンク(www.kurims.kyoto-u.ac.jp)
Introduction to Microlocal Analysis,
[ps] 196kb | [pdf] 104kb
l'enseignement math\'ematique 32 (1986) 227--259.

165:現代数学の系譜11 ガロア理論を読む
15/07/12 09:08:55.33 si4MyG9v.net
>>142
運営乙
おまえがな

166:現代数学の系譜11 ガロア理論を読む
15/07/12 09:45:40.25 si4MyG9v.net
>>136
参考 広島工業大学らしいが、1974年富山大学卒とすると、退職されたかも。それでリンク切れか
URLリンク(researchmap.jp)
研究者氏名 大川 哲介 オオカワ テツスケ
URL URLリンク(iiswww.ce.it-hisoshima.ac.jp)
所属 広島工業大学
部署 工学部 建設工学科
職名 助教授
学位 理学博士(広島大学)
学歴 
1976年東京大学 理学系研究科 位相幾何学
1974年富山大学 文理学部(理科系) 数学
URL省略
佐藤幹夫スレ ログ速 > 板一覧 > 2ちゃんねる(net) > 数学
352 : 132人目の素数さん[] 投稿日:2008/01/08(火) 10:11:33
>>351
昨年の9月にupdateされた
「佐藤超関数論と代数解析への招待」(大川哲介著)が
参考になるだろう

167:現代数学の系譜11 ガロア理論を読む
15/07/12 10:30:58.36 si4MyG9v.net
>>137 補足
>E は当然 D の次に来る物として記号が与えられた。 symbol が一つの手がかりである。
Dが分からないので、さらに引用しておく
・B は,(complex valued ) real analyitic function の層 A の次に来る物として記号が与えられた。
・hyperfunction の層 B の導入の約 10 年後,佐藤は microfunction の層 C を導入した。 そして「佐藤の基本定理」を示した。
・佐藤超函数を用いた線型微分方程式論の基本問題の一つは, 層 B が,有限階微分作用素のなす環層 D M 上の加群層として,どの程度 injective か,を調べる事と言っても良い。 flabbiness もその一つの表れである。
B の D M ないしは D M∞ 上の解析的に自然な injective resolution はまだ得られていない。
・環層 E ∞ , E R , も両者で定義でき,この場合,考えている底空間は, M は複素解析的多様体でよい。これらの環層は芽の環がネーター環でもなく,更に E R (の芽の環)は零因子も含む複雑な環層なので,O X のような単純な代数的議論は難しい。
E は当然 D の次に来る物として記号が与えられた。 symbol が一つの手がかりである。

168:現代数学の系譜11 ガロア理論を読む
15/07/12 10:50:34.27 si4MyG9v.net
>>138
>まあ、書いたのはおっちゃんですよ。そもそも、微分積分には出発点となる
>デデキントの公理や平均値の定理とか、幾つかの同値な命題が理論展開の中で
まあ、時代が変わったと思う
1.昔、むやみにデルタイプシロンが礼賛された時代があった。曰く「高校では適当にやっている収束が、大学ではデルタイプシロンで厳密にやるんだ。それが大学の数学だ。えっへん」と
2.で、佐藤幹夫が出て、私の超関数はデルタイプシロンでは扱えませんと
3.ノンスタンダードなんてのも。方程式のガロア理論では、代数的微分を使うが、これもデルタイプシロン不要だと(微分を記号として扱えばそれで良いんだと)
4.なので、デルタイプシロンは大学の数学の中心ではなくなった
5.けど、位相をやるときに、デルタイプシロンやっといたら楽だと言われる。まあ、そんなもんだろう

169:現代数学の系譜11 ガロア理論を読む
15/07/12 11:08:00.08 si4MyG9v.net
>>147
補足 基本解とデルタ関数
URLリンク(ja.wikipedia.org)
数学の分野において、線型偏微分作用素に対する基本解(きほんかい、英: fundamental solution)とは、旧来よりグリーン関数と呼ばれている概念の、シュワルツ超函数論を用いた定式化である。
ディラックのデルタ関数 δ(x) を用いて、作用素 L に対する基本解 F は非斉次方程式
LF = δ(x)
の解と定められる。ここで F は、特に理由が無ければシュワルツ超函数(弱い意味での解)として存在すればよい(真の解であることまでは要求されない)。
この概念は、二次元および三次元のラプラシアンに対して長く知られたものであった。任意の次元のラプラシアンに対しては、リース・マルツェルによって調べられた。
定数係数の任意の作用素に対する基本解の存在は、バーナード・マルグランジュ(英語版)とレオン・エーレンプライス(英語版)によって示された。
これは右辺を任意にとった方程式を解くうえで、畳み込みを用いる方法が直接的に結び付く、最も重要なケースであった。
動機付け
基本解が得られれば、元の方程式の求める解を見つけることは簡単である。実際、その方法は畳み込みを用いることで達成される。
基本解はまた、境界要素法による偏微分方程式の数値解においても重要な役割を担う。
信号処理
詳細は「インパルス応答」を参照
信号処理において、同様の微分方程式の基本解は、あるフィルタのインパルス応答と呼ばれる。

170:現代数学の系譜11 ガロア理論を読む
15/07/12 11:38:34.52 si4MyG9v.net
>>111
>>それらを自分ひとりで、先生もいなくて、彼がまだ4年生であったときに勉強していたのです。
>この手の話、真に受けない方がいい。
別の見方で、天才すぎて人生不幸というのもある
まあ、女優でもあるよね。美人過ぎて、芸能界にスカウトされて、囲い込まれて、気付いたら婚期を逃す
数学で言えば、天才すぎて、数学にのめり込みすぎて、女がいないとか(逆で男がいないとか)
平凡だが、幸せな人生というものある。というか、それも大事だということを知らないといけないんだよな

171:現代数学の系譜11 ガロア理論を読む
15/07/12 12:03:14.76 si4MyG9v.net
>>127
補足
>M:manifold 【機械】 (内燃機関の吸排気をする)マニホールド,多岐管.
幾何学系では、M:manifold 多様体だが、下記代数系ではvariety(数々の異なったもの,(特に同種のものの)寄せ集め)
URLリンク(ja.wikipedia.org)
代数多様体(だいすうたようたい、algebraic variety)は、最も簡略に言えば、多変数の連立多項式系の解集合として定義される図形と述べる事が出来る。
代数幾何学の最も主要な研究対象であり、デカルトによる座標平面上の解析幾何学の導入以来、多くの数学者が研究してきた数学的対象である。
主にイタリア学派による射影幾何学的代数多様体、代数関数論およびその高次元化に当たるザリスキおよびヴェイユによる付値論的抽象代数多様体などの基礎付けがあたえられたが、
20世紀後半以降はより多様体論的な観点に立脚したスキーム論による基礎付けを用いるのが通常である。
本項では、スキーム論的な観点に立ちつつ、スキーム論を直接用いず代数多様体を定義しその性質について述べる。
また議論を簡潔にするのため特に断らない限り体 k は代数的閉体であると仮定する(体 k が代数的閉であるという条件を除去するために必要な考察についてはスキーム論へ向けてを参照)。

172:現代数学の系譜11 ガロア理論を読む
15/07/12 12:17:41.49 si4MyG9v.net
>>125
接束
URLリンク(ja.wikipedia.org)
微分幾何学において、可微分多様体 M の接束 (tangent bundle) は M の接空間の非交和[note 1]である。
ただし TxM は M の点 x における接空間を表す。なので、TM の元は対 (x, v)、ただし x は M の点で v は M の x における接空間、と考えることができる。π(x, v) = x で定義される自然な射影 (projection)
π : TM → M
が存在する。
接束には(下のセクションで記述される)自然な位相が入る。この位相によって、多様体の接束はベクトル束(ファイバーがベクトル空間であるファイバー束)の典型的な例である。
TM の断面は M 上のベクトル場であり、TM の双対束は余接束で、M の余接空間の非交和である。定義により、多様体 M が平行化可能(英語版) (parallelizable) であることと接束が自明であることは同値である。
定義により、多様体 M が framed であることと接束 TM が stably trivial、すなわちある自明束 E に対しホイットニー和 (Whitney sum) TM ? E が自明であることは同値である。
例えば、n-次元球面 Sn はすべての n に対して framed であるが、(Bott-Milnor と Kervaire の結果によって)n = 1, 3, 7 に対してのみ parallelizable である。
役割
接束の主な役割の1つは滑らかな関数の微分の定義域と終域を提供することである。
すなわち、f : M → N が M と N を滑らかな多様体として、滑らかな関数であれば、その微分(英語版) は滑らかな関数 Df : TM → TN である。
つづく

173:現代数学の系譜11 ガロア理論を読む
15/07/12 12:24:15.66 si4MyG9v.net
>>151 つづき
URLリンク(ja.wikipedia.org)
位相と滑らかな構造
接束には自然な位相(非交和位相ではない)が入�


174:閨Aそれ自身多様体になる。TM の次元は M の次元の 2 倍である。 n 次元多様体の各接空間は n 次元ベクトル空間である。U が M の開可縮部分集合であれば、TU から U × Rn への微分同相であって各接空間 TxU から {x} × Rn への線型同型に制限するものが存在する。 しかしながら、多様体として、TM は積多様体 M × Rn に微分同相なわけではない。それが M × Rn の形であるときには、接束は自明である (trivial) という。自明な接束は通常 'compatible な群構造' を伴った多様体に対して起こる。 例えば、多様体がリー群のケース。単位円の接束は自明である、なぜならばそれは(積と自然な微分構造のもとで)リー群であるからだ。 しかしながら自明な接束をもったすべての空間がリー群というのは正しくない。自明な接束をもった多様体を parallelizable と呼ぶ。 多様体が局所的にユークリッド空間でモデルされるのとちょうど同じように、接束は U × Rn 上で局所的にモデルされる、ただし U はユークリッド空間の開部分集合である。 接束はベクトル束(これはそれ自身ファイバー束の特別な種類である)と呼ばれるより一般的な構造の例である。 明示的に書くと、n 次元多様体 M への接束は、変換関数が伴う座標変換のヤコビアンによって与えられる、M 上のランク n のベクトル束として定義できる。 例 別の簡単な例は単位円 S1 である(上の絵を見よ)。円の接束も自明であり S1 × R に同型である。幾何学的には、これは高さ無限の円柱である。 容易に視覚化できる接束は実数直線 R と単位円 S1 の接束だけであり、これらはどちらも自明である。2 次元多様体に対して接束は 4 次元でありしたがって視覚化するのは難しい。 非自明な接束の簡単な例は単位球面 S2 の接束である。この接束はつむじ頭の定理(英語版)によって非自明である。したがって、球面は parallelizable でない。 持ち上げ M の対象を TM の対象に持ち上げる(英語版)様々な方法がある。例えば、c が M の曲線であれば、c' (c の接線)は TM の曲線である。 対照的に、M についてさらに仮定をしないと(例えばリーマン計量)、余接束への同様のリフトは存在しない。



175:現代数学の系譜11 ガロア理論を読む
15/07/12 13:18:09.40 si4MyG9v.net
>>152 つづき
URLリンク(ja.wikipedia.org)
ベクトル場
接ベクトルの多様体の各点への滑らかな割り当てはベクトル場 (vector field) と呼ばれる。具体的には、多様体 M 上のベクトル場は滑らかな写像(英語版)
V : M → TM
であって、Vx と表記される x の像が x における接空間 TxM にあるようなものである。ファイバー束の言葉でいえば、そのような写像は断面 (section) と呼ばれる。M 上のベクトル場はしたがって M の接束の断面である。
M 上のすべてのベクトル場の集合は Γ(TM) によって表記される。ベクトル場は各点ごとに (pointwise) 足し合わせることができ
(V+W)_x = V_x + W_x\,
M 上の滑らかな関数を掛けることができ
(fV)_x = f(x)V_x\,
別のベクトル場を得る。するとすべてのベクトル場の集合 Γ(TM) は M 上の滑らかな関数の可換環、C∞(M) と表記される、上の加群の構造をもつ。
M 上の局所ベクトル場は接束の局所断面 (local section) である。つまり、局所ベクトル場は M のある開集合 U 上でだけ定義され、U の各点に伴う接束のベクトルを割り当てる。M 上の局所ベクトル場全体の集合は M 上の実ベクトル空間の層として知られている構造をなす。
高次の接束 略
接束上の自然なベクトル場 略
関連項目
Musical isomorphism おやじギャグ

176:132人目の素数さん
15/07/12 13:33:42.70 8DKOgtXy.net
Wikipediaコピペするだけの休日って楽しいの?

177:現代数学の系譜11 ガロア理論を読む
15/07/12 13:59:39.33 si4MyG9v.net
>>153 つづき
Musical isomorphism
URLリンク(en.wikipedia.org)
In mathematics, the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle
TM and the cotangent bundle T?M of a Riemannian manifold given by its metric. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the symbols ♭ and ♯.[1]
It is also known as raising and lowering i


178:ndices. Contents 1 Discussion 2 Trace of a tensor through a metric 3 See also 4 References See also Duality (mathematics) Raising and lowering indices Bilinear products and dual spaces Vector bundle Flat (music) and Sharp (music) about the signs ♭ and ♯



179:現代数学の系譜11 ガロア理論を読む
15/07/12 14:04:03.05 si4MyG9v.net
>>154
どうも。スレ主です。
まあ、コピペするときに、どこを切り取るか読んでる
目的なしに読むより集中力アップなんだよね、これ
前から、勉強しようと思っていた項目なんだね、これ
「佐藤幹夫の数学」を”つんどく”してた。これを読む動機にもなった
ところで、人のWikipediaコピを見るしか脳(能?)がないのか?

180:現代数学の系譜11 ガロア理論を読む
15/07/12 14:10:01.73 si4MyG9v.net
>>155 つづき
Duality (mathematics)
URLリンク(en.wikipedia.org)
In mathematics, a duality, generally speaking, translates concepts,
theorems or mathematical structures into other concepts,
theorems or structures, in a one-to-one fashion,
often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A.
Such involutions sometimes have fixed points, so that the dual of A is A itself.
For example, Desargues' theorem in projective geometry is self-dual in this sense.
Duality can also be seen as a functor, at least in the realm of vector spaces. There it is allowed to assign to each space its dual space and the pullback construction allows to assign for each arrow f: V → W, its dual f?: W? → V?.
Contents
1 Order-reversing dualities
2 Dimension-reversing dualities
3 Duality in logic and set theory
4 Dual objects
5 Dual categories
5.1 Opposite category and adjoint functors
5.2 Examples
6 Analytic dualities
7 Poincare-style dualities
8 See also
9 Notes
10 References
10.1 Duality in general
10.2 Duality in algebraic topology
10.3 Specific dualities

181:現代数学の系譜11 ガロア理論を読む
15/07/12 14:17:37.25 si4MyG9v.net
ついで
URLリンク(www.kurims.kyoto-u.ac.jp)
数理解析研究所講究録
第1739 巻2011 年251-263
特異性の概念は近代数学へ如何に寄与したか(III)- 2 :20 世紀後半の主題(3) : 後半からの新しいもの (新々概念と応用の系列)
代表例: カタストロフィー理論超局所解析的特異性時空の特異点理論
芝浦工業大学 阿部剛久(TakehisaAbe)

182:現代数学の系譜11 ガロア理論を読む
15/07/12 15:04:56.00 si4MyG9v.net
>>134 ついで
堀川穎二
URLリンク(d.hatena.ne.jp)
hiroyukikojimaの日記 2010-10-25 読者に優しい数学書を書く技術
抜粋
ここ数日、堀川 穎二『複素関数論の要諦』日本評論社を読みふけっている。そして、めちゃくちゃ感動している。数学書でこんなに興奮するのは久々のことだ。
複素関数論の要諦 堀川穎二 日本評論社 2003/03
 本書は、堀川先生が東大の数学科進学の決まった2年生に行った講義を忠実に収録している。
その忠実さったらすごくて、演習問題も、期末テストも、それについてのコメントも、成績の分布も、成績評価基準も、追試の点数と人数も、学生から採ったアンケート結果までも、なんでもかんでも掲載されている。
 最も感動したのは、解説の方針について書いてある「使用上の注意」の部分。少し長いけど、引用しよう。
「数学の論文は、数式の部分も含めて、文章として読めるように書かなければいけません」と小平邦彦先生によく言われたので、なるべく、日本語として自然に読める文章を心がけた。
そのために、正確さが犠牲にされた部分が少しはあるかもしれない。
内容の配置も、頭で理解していく流れに沿った順序になるように努力した。いずれ、そうでなくとも読めるようになることが必要であるが、初学者はそういった、本質的でないところでつまづく可能性が高いのでその点に配慮したのである。
数学の文章は、''読めば分かる''のではなく、''分かっているから読める''という側面がある。著者が何を言おうとしているのかが分かる文章を読むことによって、''分かる''ための技術を身につけないと''読める''ようにはならない。
「数学の文章は、''読めば分かる''のではなく、''分かっているから読める''という側面がある」とはけだけ名言だと思う。
ぼくは常々、数学書を書く数学者はなんであんなに無機的な書き方ができるんだろう、なんでもっと読者が分かる工夫をしないんだろう、といぶかっていたのだけど、最近その理由に思い当たった。
以下略

183:現代数学の系譜11 ガロア理論を読む
15/07/13 04:09:05.25 Y/m8pgDo.net
ついで
GAGA 代数幾何学と解析幾何学
URLリンク(ja.wikipedia.org)
数学において、代数幾何学と解析幾何学(フランス語: Geometrie Algebrique et Geometrie Analytique、略称: GAGA)[1]の2つは密接な関係にある。
代数幾何学は代数多様体を研究することに対して、解析幾何学は複素多様体やより一般的に多変数(英語版)の(複素)解析函数のゼロ点で局所的に定義された解析空間(英語版)を扱う。
これら 2つの対象の深い関係は、代数的なテクニックを解析空間へ適用したり、逆に解析的テクニックを代数多様体へ適用されたりする多大な応用を持っている。
背景
代数多様体は、局所的には多項式の共通なゼロ点として定義され、複素数上の多項式は正則函数でもあるので、C 上の代数多様体は解析空間と解釈することもできる。
同様に、多様体間の正規写像は解析空間の間の正則写像と解釈することができる。少し驚くべきことであるが、しばしば、解析的対象を代数的な方法で解釈することも可能である。
例えば、リーマン球面からリーマン球面自身への解析函数は、有理函数か、もしくは恒等的に無限大の函数であることが容易に証明できる(リウヴィルの定理の拡張として)。
もしそのような函数 f が定数ではないとすると、f(z) が無限遠点となるような z の集合は孤立していて、リーマン球面はコンパクトであるから、高々有限個の z しか f(z) の値が無限大にならない。
そのような z のあらゆる点でのローラン展開を考え、特異点を取り除くと、C 上に値を持つリーマン球面上の函数は、リウヴィルの定理により、定数函数しか残らない。このようにして f は有理函数となる。
この事実は、代数多様体として、複素射影直線とリーマン球面との間には本質的な差異は存在しないことを示している。
つづく

184:現代数学の系譜11 ガロア理論を読む
15/07/13 04:12:14.14 Y/m8pgDo.net
>>160
GAGA ジャン=ピエール・セール(Jean-Pierre Serre)による Geometrie Algebrique et Geometrie Analytique Serre (1956)
URLリンク(ja.wikipedia.org)
GAGA
1950年代の前半に、ホッジ理論のようなテクニックを含む代数幾何の基本を作り上げる一環として、2つの理論の間の多くの関係を基礎づけることが、成し遂げられた。
この理論に寄与している主要な論文は、ジャン=ピエール・セール(Jean-Pierre Serre)による Geometrie Algebrique et Geometrie Analytique Serre (1956)であり、現在は通常 GAGA と呼ばれている。
この論文では、代数多様体のクラス、正規射(regular morphism)、層といったものを、解析空間のクラス、正則写像、層へ関連付けるという一般的な結果を証明している。
この対応付けは、層のカテゴリの比較において、これらすべてに対して適用される。



185:。日、GAGA-型の結果という用語を使うときは、代数幾何学の対象と射のカテゴリから、解析幾何学の対象と正則写像の作るうまく定義される部分カテゴリへの道を開くような全ての比較定理において使われる。 以下略



186:132人目の素数さん
15/07/13 09:30:18.83 xaurmjN5.net
>>147
>3.ノンスタンダードなんてのも。
そもそも、超準解析の厳密な扱いには、超積とか基礎論が必要で
普通の解析と全く違うんだが。或る程度の学習は、さほど難しくはない。
>>149
何で今更になってそういう文章を書いたのか分からんが、
>平凡だが、幸せな人生というものある。
これは、何を以って幸せというか? という根本的な問題にかかわることで、
その答えは人それぞれだから、幸せの感じ方は人により異なるとしか。
>>111に書いたような話には裏があって、真実の話と共に、幼いときから難しい本読んでいたけど、
結局その後も余りよく分かりませんでしたっていう類の話もあるんだよ。
自分からマジメにそういうことを書いている方もいる。そういう例があるんだよ。
自らで確認して判断出来ない場合、信憑性が高く感じられて来るのは通常後者になるだろう。
だから、証拠もなく確認せずにそういう話をそのまま信じるのはやめろと。
そういうこと。

187:現代数学の系譜11 ガロア理論を読む
15/07/17 21:36:00.71 1bZvw6j0.net
>>162
おっちゃん、どうも
ピエール・ドリーニュへのインタビューがある下記
URLリンク(srad.jp)
taro-nishinoの日記: ピエール・ドリーニュへのインタビュー
日記 by taro-nishino 2014年01月17日 20時30分
最終ヴェイユ予想を解決したのは、御存知ピエール・ドリーニュ博士ですが、アホ学部学生が読んで少しは満足するだろう記事"Interview with Pierre Deligne"(PDF)
URLリンク(www.ams.org)
がタイミングよくNotices of the AMSの2月号に載っていましたので、以下に私訳を載せておきます。
ピエール・ドリーニュへのインタビュー
2013年5月
Martin Raussen オールボー大学
Christian Skau ノルウェイ科学技術大学
青年時代
Raussen and Skau:貴方はブリュッセルで第2次世界大戦終りの1944年に生まれました。貴方の最初の数学的体験を聞きたいです。どんな点で、貴方自身の家庭または学校により数学的体験が育まれましたか? 最初の数学的体験を憶えていますか?
ドリーニュ:兄が私より7歳年長なことが幸いだった。私が温度計を見て正と負の数があると認識した時、彼は-1×-1が+1であることを私に説明しようとしたものだった。
それは大きな驚きだった。後に彼が高校生の時に、3次方程式に関するノートを私にくれ、奇妙な解の公式があった。大変興味深く感じた。
私がボーイスカウトだった時、驚くべき幸運があった。そこで父親が高校教師のNijs氏である友を得た。Nijsはたくさんの方法で私を助けた。
特に彼は私に最初の実際の数学の本、すなわちブルバキの集合論を与えたが、それは一少年に与える当然の選択でない。その時、私は14歳だった。その本を消化するのに少なくとも一年かかった。こっそり他の講義もあったと推測する。
つづく

188:現代数学の系譜11 ガロア理論を読む
15/07/17 21:39:00.25 1bZvw6j0.net
>>163 つづき
自分自身のリズムで数学を学ぶ偶然を持つことは過去の世紀の


189:驚きを復活させる恩典を持つ。整数から始まって有理数、そして実数をどのように定義され得るかを他のどこかで既に私は読んだことがあった。 だが、ブルバキの中を少し進めて、集合論からどのように整数が定義され得るかを驚き、"同数の要素"を持つ2つの集合に対して、これから整数を導出し、それの意味することを先ずどう定義出来るかを感嘆したのを憶えている。 私は家族の一友人に複素変数に関する本も与えられた。複素変数の話が実変数の話ととても異なることを知ることは大きな驚きだった。一回微分可能なら解析的(べき級数展開を持つ)、等々。学校で退屈だったであろう、それらのことすべてがすごい楽しさを私に与えていた。 そうして、この教師Nijs氏は、ブリュッセル大学教授Jacques Titsに私を知らせた。私がまだ高校にいた期間中、彼のコースとセミナーを聞けた。 Raussen and Skau:貴方がブルバキを勉強したと聞いて非常に驚きます。ブルバキは通常その年齢で難しいと考えられています。貴方の正式な学校教育について少し話してもらえますか? 貴方にとって面白かったのか、または退屈だったのですか? つづく



190:現代数学の系譜11 ガロア理論を読む
15/07/17 21:41:38.04 1bZvw6j0.net
>>164 つづき
ドリーニュ:私には優れた一人の初等学校教師がいた。高校よりも初等学校で多くのことを学んだと思う。すなわち、読み方、書き方、算術、更にずっと多くのこと。
この教師が数学においてどのように実験したかを私は憶えている。その実験は私に証明、面、長さについて考えさせた。問題は半球面を同じ半径の円板面を比較することだった。それをするために、教師は両方の面を渦巻き状に紐で覆った。
半球は2倍の紐が必要だった。これは私に多くを考えさせた。すなわち、面を長さでどのように測るか? 半球面が実際に円板面の2倍であることをどのように確信するか?
高校にいた時、私は幾何での問題が好きだった。不思議な命題がさほど困難でない証明を持つから、あの年頃で幾何での証明は意味がある。いったん公理を過ぎて、そんな練習問題をすることを私は非常に楽しんだ。
幾何は、高校レベルで証明が意味のある唯一の数学分野だと私は思う。
更に、証明を書くことはもう一つ別の素晴らしい練習となる。これは数学に関するのみならず、何故事柄が真なのかを正しい仏語(私の場合)で書かなければならない。
例えば代数においてよりも、幾何において言語と数学の強い関係がある。代数は方程式の集まりを見る。論理と言語の力はさほど明らかでない。
Raussen and Skau:たった16歳で貴方はJacques Titsの講義に行きました。校外旅行に参加したので、一週間出席出来なかった話がありますが・・・?
ドリーニュ:本当だ。私はこの話をずっと後に言われた。Titsが講義に来た時、彼は訊いた。すなわち、ドリーニュはどこにいるの? 私が校外旅行にいることを説明されて、講義は次週に延期された。
つづく

191:現代数学の系譜11 ガロア理論を読む
15/07/17 21:44:04.42 1bZvw6j0.net
>>165 つづき
Raussen and Skau:貴方を輝ける学生として既に認めていたのに違いありません。Jacques Titsもアーベル賞受賞者です。彼は5年前にJohn Griggs Thompson(群論において偉大なる発見に対して)と共に受賞しました。貴方にとって彼は影響力のある教師でしたか?
ドリーニュ:はい。特に初期において。教える際に、最も重要なことは何をしないかとういうことがある。例えば、Titsは群の中心が不変部分群だと教えなければならなかった。
彼は証明を始め、そして止めて、本質的に言った。すなわち、"不変部分群は、すべて内部自己同型を保つ部分群である。中心の定義は出来ている。従ってデータの全対称を保つ。よって、不変であることは明らかだ"。
私にとって


192:、これは意表を突いた事実だった。つまり、対称性の考えのパワーだ。 Titsが証明を一歩一歩進める必要がなく、かわりに対称性が結果を明らかにしているとただ言えたことは私に多大なる影響を残している。 私は対称性を重視し、私の論文のほぼすべてにおいて、対称性ベースの議論がある。 Raussen and Skau:貴方の数学的才能をTitsがどのように発見したか憶えていますか? つづく




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch