現代数学の系譜11 ガロア理論を読む14at MATH
現代数学の系譜11 ガロア理論を読む14 - 暇つぶし2ch69:現代数学の系譜11 ガロア理論を読む
15/06/28 18:38:02.47 pEaR/2gu.net
>>48 関連
URLリンク(ja.wikipedia.org)
数学におけるトポス(topos)とは、位相空間上の層のなす圏を一般化した概念である
アレクサンドル・グロタンディークによるヴェイユ予想解決に向けた代数幾何学の変革の中で、数論的な図形(スキーム)の上で有意義なホモトピー・コホモロジー的量が定義できる細かい「位相」を考えるために導入された。
その後数理論理学者たちによる更なる公理化を経て、集合論のモデルを与える枠組みとしても認識されるようになった。
数理論理学との関わり
Kripke-Joyalの意味論とよばれる手続きによって集合論的論理式をトポスの対象と射についての言明として解釈することができる。トポス Sets における解釈が通常の記号論的な集合とその元に関する論理式解釈となる。
群、可換群、環などの数学的(特に代数的)構造の公理を論理式によって表現したとき、景 (C, J) 上のグロタンディーク・トポスにおいてその論理式を満たすような対象が (C, J) 上の群、可換群、環などの層になる。
局所環の層などについての局所的な条件も、全称量化子を用いた論理式によって自然に表現される。
一方、適切な景 (P, J) をポール・コーエンによる強制法 (forcing) の議論をなぞって構成し、その上の層の圏として連続体仮説が成立しないような集合論のモデルを得ることができる。
同様にして選択公理が成り立たないような集合論のモデルもある景の上の層の圏として実現できる。こうして構成される集合論のモデルのうちには排中律が成り立たないような数学的直観主義的モデルも自然に現れる。
歴史
グロタンディークはスキームとトポスとを同じ年に見いだしたと『収穫とまいた種と』で回想している。実際にグロタンディーク・トポスの一般論が整備されたのはSGA IVでの彼自身による発表の中でだった
その後ウィリアム・ローヴェアが集合論のモデルとしての可能性を見いだし、強制法との関連、ドリーニュの定理のとらえ直しなど記号論的な認識が深められたが、
グロタンディークの隠遁後に彼に近い学者がトポスの理論に貢献しなかったことは彼と他の数学者たちとの間の確執の一因になった
またリジッド幾何やSynthetic Differential Geometryなど「位相構造」より繊細な「微分構造」をトポスを通じて考える幾何学も得られている。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch