現代数学の系譜11 ガロア理論を読む14at MATH
現代数学の系譜11 ガロア理論を読む14 - 暇つぶし2ch600:132人目の素数さん
15/08/09 14:13:22.85 lavyZ2ql.net
・wikiなんて誰でも編集できる。
・「理論」と「命題の集合」の違いがわかる?wikiは理論の記述に向いていない。それは書籍の役割だ。
 そういうことがわかってないから正規部分群のようなことになる。

601:132人目の素数さん
15/08/09 19:46:32.36 JN0ncp3e.net
スレ主さん、イデアルの商について教えてください
I:Jって書くやつです

602:現代数学の系譜11 ガロア理論を読む
15/08/13 07:57:11.93 4fDg4Ogv.net
>>456 補足
おっちゃん、どうも。スレ主です。

>どうやら、任意のn≧2なる自然数nに対してζ(n)は超越数のようです。

こんなサイトがあったので紹介しておきます
URLリンク(www5b.biglobe.ne.jp)
数学の研究

 数学の研究途上で発見したオリジナルな結果について記しています。不明とされてきた奇数ゼータ特殊値を独自の手法
で見出しました。(ゼータの特殊値問題は現代数学の難題)
「ゼータ惑星」で2次体との関連を発見。2次体に付随するL(χ,s)の全ての特殊値を正確に求める方法(予想)を見出した。
 数学の巨人・佐藤郁郎氏が本結果を紹介して下さっています!
 「奇数ゼータと杉岡の公式」他--->コラム2003年,2004年,2006年,2007年,2008年,2009年
 「ゼータの香りの漂う式」、「作用素の定理」など---->コラム2010年、2011年、2012年

 独自の手法 テイラーシステム と フーリエシステムを開発。-->ゼータ系の彗星群
テイラーシステムとフーリエシステムは、超難問ゼータ特殊値をいとも簡単に出す強力な手法である。

本結果が研究者によって拡張されていくことを願っています。論文、Web等で引用された場合はお知らせください。
当サイトの結果が既に知られている場合はお知らせください。その旨を明記します。ご意見ご感想もお待ちしています。

■ゼータ系の彗星群 (2012/8/16更新) 
■ゼータ惑星 (2005/7/17更新) 
●その1~その14までのまとめ (2004/2/7追加)               フローチャートにまとめた
●ゼータ関数のいくつかの点について その14 (2004/2/1追加)    奇数ゼータ、L関数、無理数性、問題
●ゼータ関数のいくつかの点について その13 (2004/1/10追加)    偶数L関数と奇数ゼータ、奇妙な現象
●ゼータ関数のいくつかの点について その12 (2003/12/20追加)   L関数、統一的法則、予想


603:類似 ●ゼータ関数のいくつかの点について その11 (2003/12/12追加)   中心母関数、予想 ●ゼータ関数のいくつかの点について その10 (2003/11/25追加)   オイラー式との逆類似式 中略 ●予想2の提示(2003/1/16更新)  ---ゼータ関数ζ()に関する予想------ 解決



604:現代数学の系譜11 ガロア理論を読む
15/08/13 07:59:10.72 4fDg4Ogv.net
つづき

URLリンク(www5b.biglobe.ne.jp)
数学関連リンク集

URLリンク(homepage3.nifty.com)
■数学研究ノート   Sugimoto氏の数学研究の成果。ゼータ関数その他に関してじつに興味深い式を導出されている。
               ゼータの零点と素数分布、カオスの研究は圧巻!
URLリンク(www.geocities.jp)
■佐藤郁郎氏のサイト 日本最大の数学サイト。佐藤氏は”日本のオイラー”と言っても過言ではない。人間業とは
                思えないサイト。こんな天才的な人がいたのだ。私の結果も載せてもらい、感謝!

605:現代数学の系譜11 ガロア理論を読む
15/08/13 08:05:27.13 4fDg4Ogv.net
つづき

■佐藤郁郎氏のサイト より
URLリンク(www.geocities.jp)
■クンマーの理想数
抜粋
扱う数の範囲を整数から,
  Z(√-5)={a+b√-5|a,bは整数}
にまで拡げると,
  6=2・3=(1+√-5)(1-√-5)
 2,3は素数ですし,
  1+√-5,1-√-5
はいずれも
  a+b√-5
のなかには±1と±それ自身以外の約数をもたないので「素数」です.
 このように,もうこれ以上分解できないはずの素因数分解の仕方が2通り存在してしまう現象が起こります.Q(√d)の整数環A(ω)が必ずしも一意分解環でないことに最初に気づいたのは,ディリクレでした.
 この状況に対して,これはまだ分解が足りないためだと考えることもできます.すなわち,2,3,1±√-5は素数でなく偽物の素数である,さらに究極の数α,β,γ,δがあって,
  2=αβ,3=γδ,1+√-5=αγ,1-√-5=βδ
となっていて,
  6=αβγδ
が6の素因数分解となるという考え方をクンマーの理想数の理論といいます.
 もちろん,α,β,γ,δはZ(√-5)の中には存在しません.素因数分解したときの素因数がすべて含まれている集合を考えるのです.
  {√2,(1+√-5)/√2,(1-√-5)/√2}
 これらが理想素元であって,
  6=2・3=√2・√2・(1+√-5)/√2・(1-√-5)/√2=αβγδ
  6=(1+√-5)(1-√-5)=√2・(1+√-5)/√2・√2・(1-√-5)/√2=αδβγ
が成り立ち,いまや6の素因数分解は一意的です.
  {√2,(1+√-5)/√2,(1-√-5)/√2}
を選んだのは一見場当たり的に思えますが,のちにイデアルが導入されるとこの選択はごく自然なものだったことがわかります.イデアルの世界に至れば,ただ1通りの素因数分解が成立するようになるのです.

606:現代数学の系譜11 ガロア理論を読む
15/08/13 08:09:49.01 4fDg4Ogv.net
つづき

URLリンク(ja.wikipedia.org)
イデアル
歴史
抜粋
クンマーの理想数の理論は非常に形式的で、とても難解なものであった。後になってデデキントは理想数の理論を整理することによってイデアルを考案した。
歴史的には、ヒルベルトの『数論報告』の中で、デデキントのイデアル概念が取り上げられたことから、イデアルという名称が採用されることになった。
イデアル (Ideal) とは、明らかに理想数に由来する名前である。

現代の環論の言葉で言うなら、先の 6 の分解に対するクンマーの考えは次のようなことに相当する。

A = 2R + (1 + √5 i )R,
B = 2R + (1 - √5 i )R,
C = 3R + (1 + √5 i )R,
D = 3R + (1 - √5 i )R

とすれば、

6R = A × B × C × D

であり、

2R = A × B,
3R = C × D,
(1 + √5 i )R = A × C,
(1 - √5 i )R = B × D,




607:キなわち、6 という元の素因数分解を考えるのではなく、6 により生成されるイデアルの素イデアル分解を考えることが適当だったのである。 また、現代の環論では 2, 3, 1 + √5 i, 1 - √5 i はそもそも R における 6 の素因数ではない。これらのように「これ以上分解できない元」は既約元と呼ばれ、素数の一般の概念である素元とは区別される。詳しくは環 (数学)を参照のこと。 なお、理想数の理論の考え方は、現代ではイデアル論の他に p ?進体の理論にも継承されている。



608:現代数学の系譜11 ガロア理論を読む
15/08/13 08:21:37.15 4fDg4Ogv.net
>>524
どうも。スレ主です。

イデアルの商は、詳しくないのでよくわかりません
イデアル商、剰余環(商環)、分数イデアル、可逆イデアルと紛らわしい用語がたくさんあるね
こういうときは、しっかり区別して覚えることが大事だ
URLリンク(ja.wikipedia.org)
抜粋
抽象代数学において、I と J が可換環 R のイデアルのとき、それらの イデアル商(英: ideal quotient) (I : J) とは集合

(I : J) = {r ∈ R | rJ ⊂ I}

である。すると (I : J) も R のイデアルである。イデアル商は商と見ることができる、なぜならば IJ ⊂ K であることと I ⊂ K : J であることが同値だからだ。イデアル商は準素分解の計算に役立つ。また代数幾何において差集合の記述で現れる(下記参照)。

(I : J) はその表記により コロンイデアル(colon ideal)と呼ばれることがある。分数イデアルの文脈では、分数イデアルのインバースに関連した概念がある。

URLリンク(ja.wikipedia.org)
抜粋
イデアルは整数の算術から定義される合同算術の方法と同様の剰余環(商環)の構成にも用いられる、この点において群論で剰余群(商群)の構成に用いられる正規部分群と同様のものと理解することができる。

必ずしも環の中で閉じているわけではないが、「イデアル」と呼ばれる重要な例を二つ挙げる。詳細はそれぞれの項を参照。

・分数イデアル: 通常は R が商体 K を持つ可換整域である場合に定義される。名前が示唆する通り、分数イデアル (fractional ideal ) は K の特別な性質を持つ R ?部分加群である。分数イデアルが完全に R に含まれる時には、真に R のイデアルを成す。
・可逆イデアル: 通常は、可逆イデアル (invertible ideal ) A は分数イデアルであって、別の分数イデアル B で AB = BA = R を満たすものが取れるものと定義される。
文献によっては、R が整域ではなく一般の環で、通常のイデアル A, B が AB = BA = R を満たすときに、「可逆イデアル」と言う呼称を用いるものがある。

609:現代数学の系譜11 ガロア理論を読む
15/08/13 08:44:16.96 4fDg4Ogv.net
>>521-522
どうも。スレ主です。
まとめレスご容赦

1.ハーツホーンの代数幾何について:
  証明が省略されているという批判があると聞いたけど、ハーツホーンながめて(>>514など)、証明が省略されていることが礼賛の要因の一つかなと思った
  つまり、「ここらの細かい証明は飛ばして先に進もう」精神かなと。それで、一度最後まで読んで下さいと。証明知りたい人はEGAへと
  なるほどと納得した次第
2.wikipediaについて:
  「wikiなんて誰でも編集できるから・・」という批判は、wikipedia発足当初からあった。でも、wikipediaはクラウドなんだよね。そこがキモだな
  昔ブリタニカや岩波数学辞典が珍重された。でも、いま英語版含むwikipediaは便利だよね。内容豊富で新しいし
  (ブリタニカや岩波数学辞典は、紙面制約があり時間的にタイムラグ大なんだ)
3.wikiは理論の記述に向いていない。それは書籍の役割だ:
  「昔ブリタニカや岩波数学辞典が珍重された」という事実。つまり、現代では辞書を使わず英語を学習する人はいない。おそらく数学も同じだろう
  wikipediaいやなら、別のオンライン数学辞書も有るよ。たまに読み比べるが、だいたいwikipediaの方が内容豊富で充実していると感じる。クラウドだからだろうね

余談だが、正規部分群より共役変換が分かってなかったんだね。共役変換がきちんと消化できてなかったんだ。共役変換が分かったら、正規部分群もすっきりしました。はい

610:現代数学の系譜11 ガロア理論を読む
15/08/13 08:57:49.50 4fDg4Ogv.net
>>527 補足

■佐藤郁郎氏のサイト より
URLリンク(www.geocities.jp)
■クンマーの理想数
つづき

【2】類体論

 2次体における素数の分解

  Q(i),Q(√-2),Q(√2),Q(√-3),Q(√3)

はいずれも類数が1であって,これらの体の整数環は一意分解整域となります.したがって,素数は素イデアルの積としてただ1通りに表されます.

 それに対して,Q(√-5)やQ(√-6)は類数が2であり,Z(√-5)やZ(√-6)は一意分解とは限らないことを意味しています.

  6=2・3=(1+√-5)(1-√-5)

611:132人目の素数さん
15/08/13 09:02:04.84 YNbcLEHA.net
ユークリッド環が単項イデアル整域になる証明がいまいちわかりません
わかりやすく解説してくれませんか?

612:現代数学の系譜11 ガロア理論を読む
15/08/13 10:13:57.48 4fDg4Ogv.net
そんな難しいことを聞かれても分からんよ、正直(^^;

613:132人目の素数さん
15/08/13 10:15:54.19 YNbcLEHA.net
いやいやwご謙遜をw

614:現代数学の系譜11 ガロア理論を読む
15/08/13 10:21:26.25 4fDg4Ogv.net
ユークリッド環とは?
URLリンク(ja.wikipedia.org)
数学の特に抽象代数学および環論におけるユークリッド整域あるいはユークリッド環とは、「ユークリッド写像(次数写像)」とも呼ばれるある種の構造を備えた環で、そこではユークリッドの互除法を適当に一般化したものが行える。
この一般化された互除法は整数に対するもともとの互除法アルゴリズムとほとんどど同じ形で行うことができ、任意のユークリッド環において二元の最大公約数を求めるのに適用できる。
特に、任意の二元に対してそれらの最大公約数は存在し、それら二元の線型結合として書き表される(ベズー恒等式)。
また、ユークリッド環の任意のイデアルは主イデアル(つまり、単項生成)であり、したがって算術の基本定理の適当な一般化が成立する。すなわち、任意のユークリッド環は一意分解環である。

ユークリッド環のクラスをより大きな主イデアル環 (PID) のクラスと比較することには大いに意味がある。
勝手な PID はユークリッド環(あるいは実際には有理整数環を考えるので十分だが)と多くの「構造的性質」を共有しているが、しかしユークリッド環には明示的に与えられるユークリッド写像から得られる具体性があるのでアルゴリズム的な応用に有用である。
特に、有理整数環や体上一変数の任意の多項式環が容易に計算可能なユークリッド写像を持つユークリッド環となることは、計算代数において基本的に重要な事実である。

そういったことから、整域 R が与えられたとき、R がユークリッド写像を持つことがわかるとしばしば非常に便利なのである。
特に、そのとき R が PID であることが分かるが、しかし一般にはユークリッド写像の存在が「明らか」でないときに R が PID かどうかを決定する問題は、それがユークリッド環であるかどうかの決定よりも容易である。

可換環 ⊃ 整域 ⊃ 正規環 ⊃ 一意分解環 ⊃ 主イデアル整域 ⊃ ユークリッド環 ⊃ 体

URLリンク(ja.wikipedia.org)
代数学において単項イデアル整域(主イデアル整域、英: principal ideal domain; PID)あるいは主環とは、任意のイデアルが単項イデアルであるような(可換)整域のことである。

615:現代数学の系譜11 ガロア理論を読む
15/08/13 10:28:48.40 4fDg4Ogv.net
つづき
ああ、この性質”整域 R とその上のユークリッド函数 f について””R は主イデアル整域を成す。実は、I が R の非零イデアルならば、I ? {0} の各元 a のうち f(a) が最小となるもので I は生成される[12]。”か
[12]^ Fraleigh & Katz (1967), p. 377, Theorem 7.4 だと
まあ、URL原文と、[訳語疑問点]とあるから英文版と、[12]の文献か類似文献、それに例があがっているから、例を考えてみたらどうですか?
URLリンク(ja.wikipedia.org)
性質
整域 R とその上のユークリッド函数 f について:
R は主イデアル整域を成す。実は、I が R の非零イデアルならば、I ? {0} の各元 a のうち f(a) が最小となるもので I は生成される[12]。
ここから R が一意分解環かつネーター環でもあることが帰結される。
一般の主イデアル整域に比べ、分解の存在性(つまり R が分解不能整域[訳語疑問点] (atomic domain) であること)は、ユークリッド環の場合には特に容易に示せる。
ユークリッド函数 f を (EF2) を満たすように取り、x は f(x) 個よりも多くの非単元因子に分解できないものとして、x から繰り返し既約因子に分解していけば、必ず既約元への分解が得られる。

616:132人目の素数さん
15/08/13 10:31:42.59 YNbcLEHA.net
>ああ、この性質”整域 R とその上のユークリッド函数 f について””R は主イデアル整域を成す。実は、I が R の非零イデアルならば、I ? {0} の各元 a のうち f(a) が最小となるもので I は生成される[12]。”か

そうです。ここがわからないんです。なんでこういう性質になるんですかね。

617:現代数学の系譜11 ガロア理論を読む
15/08/13 10:37:54.92 4fDg4Ogv.net
>>527-528 補足

>>527
α=β=√2、γ=(1+√-5)/√2、δ=(1-√-5)/√2
だな

ところで、>>528から
A = 2R + (1 + √5 i )R vs √2
B = 2R + (1 - √5 i )R, vs √2
C = 3R + (1 + √5 i )R, vs (1+√-5)/√2
D = 3R + (1 - √5 i )R vs (1-√-5)/√2

となるんだろうね・・・

618:132人目の素数さん
15/08/13 11:02:53.88 HolOcI9x.net
>>537(>>532)
Rをユークリッド整域とする。Rの零元を0で表わす。RのI≠(0)なるイデアルIを任意に取る。
Iのa≠0なる元aをδ(a)(RのR∖{0}への制限δは、δ:R∖{0}→N)が最小なるように取る。
b∈Iを任意に固定する。Rはユークリッド整域であり、Nは自然数全体だから、
ユークリッド整域の定義から、両方共に或るq,r∈Rが存在してb=qa+r、r≠0またはδ(r)<δ(a)。
しかし、r≠0とするとδ(r)<δ(a)となり、r=b-qa∈Iだから、δ(a),a∈I\{0}が最小と仮定したことに反する。
従って、r=0であって、δ(r)は定義されず、b=qa+r=qa+0=qaを得る。
aが生成する単項イデアル(a)は両側イデアルで、qa∈(a)だから、b∈(a)。
Iの元bは任意だったから、I⊂(a)。ここで、仮定から、I⊃(a)。従って、I=(a)。
RのI≠(0)なるイデアルIは任意に取っていたから、Rの任意のイデアルは単項イデアルである。
従って、定義から、ユークリッド整域は単項イデアル整域である。

619:132人目の素数さん
15/08/13 11:46:18.61 YNbcLEHA.net
>Iのa≠0なる元aをδ(a)(RのR∖{0}への制限δは、δ:R∖{0}→N)が最小なるように取る。

これは、こう仮定しても一般性は失われないってことですよね?
なんでこんなふうに写像をとるのか意味がわからなかったんですが。

自分の本もここまで丁寧に解説してくれると助かるんですけどねぇ・・・
でも、ありがとうございました。なんとなくわかったかもです^^

620:132人目の素数さん
15/08/13 11:54:04.19 1z8vHQ0i.net
この程度の奴でも数学やるんだな

621:132人目の素数さん
15/08/13 11:56:48.76 YNbcLEHA.net
^^;
サーセンww

622:132人目の素数さん
15/08/13 14:59:55.95 xBgmYnaS.net
>>533
代数入門の必須内容を難しいと思うということは、代数入門をすっ飛ばしていきなりガロア理論やったの?

623:132人目の素数さん
15/08/14 00:40:43.93 d8aNhaKp.net
何も分かってなくてもコピペくらいならできるからな

624:132人目の素数さん
15/08/15 09:43:49.92 oFhU3AyR.net
土曜日なのにスレ主さんが来ない・・・

625:132人目の素数さん
15/08/15 20:02:55.88 n1b9UPzl.net
コピペの始まりは、土日の始まり

626:現代数学の系譜11 ガロア理論を読む
15/08/15 20:08:20.67 BibK/cXU.net
>>545
どうも。スレ主です。
旅に出ていました。はい

627:現代数学の系譜11 ガロア理論を読む
15/08/15 20:20:59.92 BibK/cXU.net
>>543-544
サーセンww(^^:

難しいというより、ユークリッド環は初耳
つーか、環論あまりやってないってのが正直な話です
これから勉強します、はい

でもね。「代数入門の必須内容」の定理は未証明では。だから、ID:xBgmYnaS予想。でも、容易に反例が見つかりそうですね(「代数入門」でユークリッド環を扱っていない本が一つあれば良いのだから)
だから、「代数入門をすっ飛ばして」ではないんだよね。かつ、代数方程式のガロア理論には、ユークリッド環は必須ではないと思うのだが

>何も分かってなくてもコピペくらいならできるからな

この定理はトリビアル(ほぼ自明)
だが、ある話題Aに対して、あるコピペBをしたときに、1)コピペBが適切かどうか 2)2KB制限の中でURLなどから適切に抜粋されているか
そこらが、コピペする人のセンスが出るんだよね

628:現代数学の系譜11 ガロア理論を読む
15/08/15 20:41:01.88 BibK/cXU.net
>>541-542

URLリンク(kotowaza-allguide.com)
聞くは一時の恥、聞かぬは一生の恥 - 故事ことわざ辞典
(引用おわり)

むかーし読んだ話で、外国(米?)の大学では、結構初歩的な質問でもどうどうとするとか。教える側も丁寧に教えるとか
グロタン先生も、結構初歩的な質問をして、おまいら答える義務があるという態度だったとか
これも米だったと思うが、ある質問魔の学生がいて、それがぐんぐん伸びて立派な数学研究者になったとか
読んだ記憶がある

実際質問すると、記憶に残るし
質問に教えてあげると、もっと記憶に残るんだ(^^;

629:現代数学の系譜11 ガロア理論を読む
15/08/15 21:00:29.87 BibK/cXU.net
>>454>>472
URLリンク(www.amazon.co.jp)
数学の大統一に挑む 単行本 ? 2015/7/13 エドワード・フレンケル (著), 青木 薫 (翻訳)

これ、旅の行き帰りに読みました
面白かったです
全体的にめちゃ面白い。おすすめです

が、一点おかしいところがある
P188『「層」という一九八〇年代に発見された数学』
P188「層は、一九八〇年代にウラディーミル・ドリンフェルトによって提唱された概念である。」

URLリンク(ja.wikipedia.org)
青木 薫(あおき かおる、女性、1956年 - )は、翻訳家。
山形県生まれ。京都大学理学部卒業、1984年同大学院博士課程修了、「原子核間ポテンシャルのパリティ依存性及び角運動量依存性に関する微視的研究」で理学博士。
専門は理論物理学。2007年度日本数学会出版賞受賞。

630:現代数学の系譜11 ガロア理論を読む
15/08/15 21:11:21.05 BibK/cXU.net
>>550 つづき
ところで
P383『父はこれまでの話を読んで、「内容を詰め込みすぎだ」と言った。』

「確かに本章では、ヒッチン・モジュライ空間、ミラー対称性、Aブレーン、Bブレーン、保型層といった概念が登場した。」

著者エドワード・フレンケルの父って・・・、なにものだ・・・

631:現代数学の系譜11 ガロア理論を読む
15/08/15 21:18:04.33 BibK/cXU.net
>>551 つづき
URLリンク(en.wikipedia.org)
Edward Frenkel

Mathematical work

Jointly with Boris Feigin, Frenkel constructed the free field realizations of affine Kac?Moody algebras (these are also known as Wakimoto modules),
defined the quantum Drinfeld-Sokolov reduction, and described the center of the universal enveloping a


632:lgebra of an affine Kac?Moody algebra. The last result, often referred to as Feigin?Frenkel isomorphism, has been used by Alexander Beilinson and Vladimir Drinfeld in their work on the geometric Langlands correspondence. Together with Nicolai Reshetikhin, Frenkel introduced deformations of W-algebras and q-characters of representations of quantum affine algebras. Frenkel's recent work has focused on the Langlands program and its connections to representation theory, integrable systems, geometry, and physics. Together with Dennis Gaitsgory and Kari Vilonen, he has proved the geometric Langlands conjecture for GL(n). His joint work with Robert Langlands and Ngo B?o Chau suggested a new approach to the functoriality of automorphic representations and trace formulas. He has also been investigating (in particular, in a joint work with Edward Witten) connections between the geometric Langlands correspondence and dualities in quantum field theory. つづく



633:現代数学の系譜11 ガロア理論を読む
15/08/15 21:24:53.16 BibK/cXU.net
>>552 つづき
URLリンク(en.wikipedia.org)
Edward Frenkel

Love and Math: A Mathematical Memoir

Frenkel's book Love and Math: The Heart of Hidden Reality was published in October 2013.[2]
It was a New York Times bestseller[11] was named one of the Best Books of 2013 by Amazon and iBooks, and was the 2015 winner of the Euler Book Prize.[12]

In a review published in The New York Review of Books,
Jim Holt called Love and Math a "winsome new memoir" which is "three things: a Platonic love letter to mathematics; an attempt to give the layman some idea of its most magnificent drama-in-progress;
and an autobiographical account, by turns inspiring and droll, of how the author himself came to be a leading player in that drama.”[13]

The New York Times review called the book "powerful, passionate and inspiring."[14]

Keith Devlin wrote in The Huffington Post: “With every page, I found my mind's eye conjuring up a fictional image of the book's author,
writing by candlelight in the depths of the Siberian winter like Omar Sharif's Doctor Zhivago in the David Lean movie adaptation of Pasternak's famous novel.
Love and Math is Edward Frenkel's Lara poems... As is true for all the great Russian novels,
you will find in Frenkel's tale that one person's individual story of love and overcoming adversity provides both a penetrating lens on society and a revealing mirror into the human mind.”[15]
抜粋おわり

634:現代数学の系譜11 ガロア理論を読む
15/08/15 21:27:05.73 BibK/cXU.net
>>553
"It was a New York Times bestseller[11] was named one of the Best Books of 2013 by Amazon and iBooks, and was the 2015 winner of the Euler Book Prize.[12]"
か・・・
こんな難しい本がね~

635:132人目の素数さん
15/08/15 22:32:46.71 CRUPVEKQ.net
初耳だから容易に反例が見つかると?頭悪すぎ

636:現代数学の系譜11 ガロア理論を読む
15/08/15 22:33:02.39 BibK/cXU.net
新スレ立てたので、あとはこちらで

現代数学の系譜11 ガロア理論を読む15
スレリンク(math板)

637:現代数学の系譜11 ガロア理論を読む
15/08/15 22:33:57.21 BibK/cXU.net
>>555
自分の持っている本が全てだと思っているのか?

638:現代数学の系譜11 ガロア理論を読む
15/08/15 22:59:18.47 BibK/cXU.net
>>539
どうも。スレ主です。

類似の証明が落ちていました・・
URLリンク(d.hatena.ne.jp)
corollaryの数学日記 <[代数学] ユークリッド整域 (ユ... | [代数学] 単項イデアル整域>
01-26-2013 単項イデアル整域

■[代数学] ユークリッド整域 ⇒ 単項イデアル整域

Rをユークリッド整域、I ≠ (0)をRのイデアルとし、Iの0でない元aをφ(a)が最小となるようにとる。

b∈ Iを任意にとる。

仮定よりRはユークリッド整域なので

b=aq+r
r≠ 0またはφ(r) < φ(a)

を満たすq,r∈ Rが存在する。

ここでr≠ 0とすると、φ(r) < φ(a)となるが、これはr=b-aq ∈Iよりaの最小性に反する。

従って、r=0である。

よって、b=aq∈(a)となり、I=(a)が示せた。

代数系入門
作者: 松坂和夫
出版社/メーカー: 岩波書店
発売日: 1976/05/27

639:現代数学の系譜11 ガロア理論を読む
15/08/15 23:03:42.63 BibK/cXU.net
>>558 つづき

”b=aq+r
r≠ 0またはφ(r) < φ(a)”

ここね

”b=aq+r
r=0 またはr≠ 0かつφ(r) < φ(a)”
が正解じゃないでしょうか?(>>539に同じ)

640:現代数学の系譜11 ガロア理論を読む
15/08/15 23:04:22.10 BibK/cXU.net
あとは新スレで

641:132人目の素数さん
15/08/15 23:14:01.49 l5BiiSrC.net
>>558

君が自分の主張を正当化したいなら、その証明が乗ってない代数入門書を探しなさい

>>559
これだから教養の無い人は困る
φの定義を確認しなさい

642:『佳子様』の『秘密』を『暴露』
15/08/20 21:59:16.84 2mI8wqKu.net
.
Σ(Д・;)"プチエンジェル事件"!(小学生売春事件)
▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼▼
プチエンジェル事件に隠された日本の闇を暴露する!

■実は、『女性皇族』の『男遊び』と、
 女性皇族がおこなったハニートラップだった!!

■その『男遊び』と『トラップ』を誤魔化す為の、
『プチエンジェル事件』が真相だったのだ!!

■闇に包まれた真相を、私が『暴露』する!!

※知る覚悟はできていますか?
下記を『Google』か『Yahoo』で検索して下さい。

+++++++++++++++++++++++++++++++++
検索⇒『佳子様 真子さま kare氏』
+++++++++++++++++++++++++++++++++

※上記で検索しますと、1ページ目の5番目以内に、

〔懇約】秋條宮家の佳子様と・・・・・・・
↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑が表示されます。

※世の中、知らない方が良い事もあるんです・・・。
▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲▲
URLリンク(mat)ome.naver.jp/odai/2143960880970769001
.

643:132人目の素数さん
15/08/20 22:01:21.91 dzi0fD1q.net
土日はまだだよ

644:過去ログ ★
[過去ログ]
■ このスレッドは過去ログ倉庫に格納されています


最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch