15/08/01 19:26:43.97 tftR4opy.net
数学は世界をこう見る (PHP新書) 新書 2014/5/16 小島 寛之 (著)(P25あたり)に書いてあることだが、少しかみ砕いて書く
6は、2x3と因数分解される。だから、6という数には、因数2と因数3が含まれていると考えることができる
しかし、イデアルで考えると、包含関係は逆転するんだ
イデアル6は、イデアル2とイデアル3の両方に包含されている
まあ、イデアル2とイデアル3の重なり部分が、イデアル6だという見方もできる
ここで気がつくことだが、ある数の因数が多いと集合としてのイデアルは小さいってことだな
そこで、少し賢い人は気付く。自然数の世界では素因数に対応するイデアル(例えば上記のイデアル2やイデアル3)は、自然数以外の他のイデアルには含まれないってことを
つまり、これが極大イデアルの一番素朴な例だ。まずここを理解して、極大イデアル→その世界での素因数を考えること
そういうイメージを持ってみな
URLリンク(ja.wikipedia.org)
例
整数環 Z の極大イデアルは、ある素数 p で生成されるイデアル (p) = pZ であり、また任意の素数 p についてイデアル (p) は極大イデアルである[2]。