現代数学の系譜11 ガロア理論を読む14at MATH
現代数学の系譜11 ガロア理論を読む14 - 暇つぶし2ch378:現代数学の系譜11 ガロア理論を読む
15/07/25 22:24:39.88 tAJoLOyr.net
スキーム
URLリンク(ja.wikipedia.org)
概型

数学における概型あるいはスキーム (英: scheme) とは、可換環に対して双対的に構成される局所環付き空間である。
二十世紀半ばにアレクサンドル・グロタンディークによって導入され、以降の代数幾何学において任意標数の代数多様体を包摂し、係数の拡大や図形の「連続的」な変形を統一的に取り扱えるような図形の概念として取り扱われている。
さらに、今まで純代数的な対象として研究されてきた環についてもそのアフィンスキームを考えることである種の幾何的対象として、多様体との類推にもとづく研究手法を持ち込むことが可能になる。このため特に数論の分野ではスキームが強力な枠組みとして定着している。

スキームを通じて圏論的に定義される様々な概念は大きな威力を発揮するが、その一方で、古典的な代数幾何においては点とみなされなかった既約部分多様体のようなものまでがスペクトルの「点」になってしまう。
このためヴェイユ・ザリスキ流の代数幾何学(これ自体大幅な形式化によって前の世代の牧歌的なイタリア流代数幾何に引導を渡すものだったのだが)を習得して研究していた同時代の学者たちからは戸惑いのこもった反発を受けた。

目次
1 定義
1.1 環のスペクトル
1.2 アフィンスキーム
1.3 スキーム
2 スキームについての諸概念
3 古典的な代数幾何学との対応
4 歴史と動機
5 代数幾何学の対象の現代的定義
6 スキームのカテゴリ
7 OX 加群
8 一般化
9 関連項目
10 参考文献


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch