現代数学の系譜11 ガロア理論を読む14at MATH
現代数学の系譜11 ガロア理論を読む14
- 暇つぶし2ch325:ヲ式を指しています。 係数に独立変化量が登場する場合を考えなければ、代数関数の概念を把握することはできないとアーベルは言っています。アーベルの数学を理解するうえで本質的な場面ですが、この場合の「代数関数」の一語は重い意味を担っています。 なぜなら、この代数関数は「係数に代数的演算を施して組み立てられる表示式」の範疇をはるかに越えているからです。代数方程式の代数的解法の考察を通じて、代数関数論の壮麗な建築物への通路が開かれていることがわかります。 アーベルの代数方程式論は、後年のリーマンに通じる一般的な代数関数論を念頭に置いて構想されていることが、はっきりとわかる場面です。 変化量を内包する係数を持つ代数方程式の根に着目することにより、独立変化量の個数がひとつなら一変数代数関数が認識され、複数なら、多変数の代数関数が認識されます。 とこあれ長い考察を経て、ようやく代数的可解方程式の概念が規定されました。 2008-04-18-Fri (ガウス25)アーベルの代数方程式論(1) アーベルには 「方程式の代数的解法について」 という未定稿があります。執筆時期は1828年後半と推定されます。フランス語で書かれていて、全二巻のアーベル全集の巻2の巻末に記載されています。 代数方程式に寄せるアーベルの思索がよく表明されています。構成を見ると、長い序文の後に、はじめのふたつの章 §1 代数的表示式の一般的形状の決定 §2 ある与えられた代数的表示式が満たしうる最も低い次数の方程式の決定 が続き、さらに §3 ある与えられた次数の既約方程式を満たしうる代数的表示式の形状について へと進んでいますが、未完成に終わりました。
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch