15/07/11 18:29:42.68 FKo26YYw.net
>>117 関連
あとは、面白そうだが、佐藤と関係なさそうなので省略
URLリンク(ja.wikipedia.org)
テンソル(英: tensor, 独: Tensor)とは、線形的な量または線形的な幾何概念を一般化したもので、基底を選べば、多次元の配列として表現できるようなものである。
しかし、テンソル自身は、特定の表示系によらないで定まる対象である。個々のテンソルについて、対応する量を記述するのに必要な配列の添字の組の数は、そのテンソルの階数とよばれる。
例えば、質量や温度などのスカラー量は階数0のテンソルだと理解される。同様にして力や運動量などのベクトル的な量は階数1のテンソルであり、力や加速度ベクトルの間の異方的な関係などをあらわす線型変換は階数2のテンソルで表される。
物理学や工学においてしばしば「テンソル」と呼ばれているものは、実際には位置や時刻を引数としテンソル量を返す関数である「テンソル場」であることに注意しなければならない。
いずれにせよテンソル場の理解のためにはテンソルそのものの概念の理解が不可欠である。
テンソルの応用と重要性
テンソルは、物理学や工学において重要な位置を占めている。例えば、拡散テンソル画像では、さまざまな方向への臓器の水に対する微分透過率を表すテンソル量を用いて、脳の走査像が構成される。
おそらく工学でテンソルが最も活用されているのは応力テンソルとひずみテンソルだろう。これらは2階のテンソルで、4階のテンソルである弾性テンソルによって一般の線型的な素材に関連づけられている。
とくに3次元の物体中の応力を表す2階のテンソルは3次の正方行列によって成分を表示することができる。
物体の中の立方体状の無限小体積要素について3方向の面それぞれ(向かい合う面どうしは十分近いので同一視される)に一定の力がかかっていて、力は3つの方向の要素を持っている。
したがって3×3、つまり9個の成分によってこの立方体状無限小体積要素(最終的には点と見なされる)における応力が記述される。物体の境界内にはこの応力が(場所によって異なった値をとりながら)分布しており2階のテンソル(場)が考えられることになる。
抽象的なテンソルの理論は今では多重線型代数と呼ばれる線型代数の一分野になっている。
つづく