面白い問題おしえて~な 二十一問目at MATH
面白い問題おしえて~な 二十一問目 - 暇つぶし2ch123:132人目の素数さん
15/06/13 23:25:10.90 QxkJCEZQ.net
ああ、e_x, e_y は定ベクトルではないのか、
それはすまなかった。しかし、
>軸上の任意の点からE_x、E_yに垂直な方向で
>そのz座標における各関数値と同じ大きさを持つ
>ベクトルe_xおよびe_y
は、意味不明だな。言葉でうまく書けないなら、
式で定義したほうが伝わるんじゃないかね?

124:132人目の素数さん
15/06/13 23:41:28.88 qxL5Q/0+.net
>>122
そうですねえ……
すぐに定式化とはいかないのでやはり言葉での説明なのですが、要するに
あるz軸上の値を決めたときに最初に挙げた二つの関数が取る値をx、yとして、
これをそのz軸上の値における座標(x、y)としてxy平面にプロットする訳です。
そうするとxy平面にはzで添数づけられた連続なグラフのようなものが描けるはずなので、それを求めてください。

125:132人目の素数さん
15/06/13 23:55:31.45 qxL5Q/0+.net
問題(修正版)
V^3空間においてz軸を変位中心とし、x、y軸に垂直な方向に変位する2つの余弦関数、
E_x=cos(z)、E_y=cos(z-φ)
を考える。あるzにおける各関数の値をそれぞれx、yとし、
zにより添数づけられた座標(x、y)としてxy平面にプロットするとき、
xy平面上の軌跡を求めよ。
ただし、関数中におけるφは初期位相を表しており、
今回は特にφ=0、π/4、π/2、3π/4のいずれかであるものとする。
また、描かれた軌跡について添数zの値による変化の方向を調べ、
一方向に定まる場合には、それも併記すること。

126:132人目の素数さん
15/06/14 00:05:53.44 ovwdE92/.net
ああ、リサージュ曲線のこと話してたの
説明下手すぎでしょ…
最初の問題文のように下手な文章でわざわざ遠回しに表現する意味あったの?

127:132人目の素数さん
15/06/14 00:10:38.56 nchbPgqM.net
理紗汁

128:132人目の素数さん
15/06/14 00:28:15.70 yvZpfH/+.net
>>125今解いてきたけどリサージュ曲線じゃなくね?
0とπ/2のときはとりあえず直線になるね
π/4は円か?3π/4はまだやってない

129:132人目の素数さん
15/06/14 00:33:23.67 yvZpfH/+.net
すまん紛れもなくリサージュ曲線だったわ

130:132人目の素数さん
15/06/14 00:44:42.42 x/eXaC3E.net
lissajous は リサジュー と発音するんじゃね?

131:132人目の素数さん
15/06/14 00:47:22.00 yhbaX4/I.net
/ˈlɪsəʒuː/だそうです

132:132人目の素数さん
15/06/14 00:54:35.85 yvZpfH/+.net
>>130アクセントは?

133:132人目の素数さん
15/06/14 01:02:56.17 yhbaX4/I.net
第一音節です
かと思ったんですけど、元はフランス語なんですね
/lisaʒu/
フランス語にアクセントはないっぽいので、リサジュみたいな感じなんでしょうか

134:132人目の素数さん
15/06/14 01:03:00.80 GhoEuWAe.net
>>124
なんで3次元なの?

135:132人目の素数さん
15/06/14 01:04:45.60 yhbaX4/I.net
問題を複雑にするためだと思います

136:132人目の素数さん
15/06/14 01:09:17.92 ovwdE92/.net
そこは分かれよ
振動面の直交する電磁波の重ね合わせを定点観測する状況のことでしょ

137:132人目の素数さん
15/06/14 01:37:37.90 yvZpfH/+.net
>>135
物理どうのこうのだから多分それだよな
初期位相を変えるのは偏光のことを指していると思われ

138:132人目の素数さん
15/06/14 02:05:56.19 OzMn4BdF.net
黒4個、白4個、赤4個�


139:~形に繋いでネックレスを作る方法をエレガントに求めよ。 同色の玉は見分けがつかず、回転や裏返しで一致する繋ぎ方は同じものと見做す。



140:132人目の素数さん
15/06/14 03:22:07.16 yV4TcWxT.net
宿題は自分でやれ

141:132人目の素数さん
15/06/14 05:13:55.99 OzMn4BdF.net
>>138
まぁやってみろよ。

142:132人目の素数さん
15/06/14 09:24:00.27 Imd90ide.net
ただの数珠順列やん。

143:132人目の素数さん
15/06/14 09:28:00.96 r3//wh8S.net
>>123-125
なんだ。結局>>118でよかったのか。
簡単なことは、簡単にすまそうよ。

144:132人目の素数さん
15/06/14 10:56:06.46 OzMn4BdF.net
>>140
いかに上手に計算するかが問題なんだけどな。

145:132人目の素数さん
15/06/14 11:26:20.13 r3//wh8S.net
>>137 >>140 >>142
この問題だと、
裏返して重なる
が面倒だよね。

146:132人目の素数さん
15/06/14 11:42:56.16 0jPi0lqx.net
バーンサイドの定理

147:132人目の素数さん
15/06/14 11:48:33.06 iM/KqZS8.net
お前ら問題をよく読めよ。求めるのはネックレスを作る方法だぞ。
手芸板とかの方がいいんじゃないか?
そんなのあるのかどうか知らんけど。

148:132人目の素数さん
15/06/14 17:13:57.01 yvZpfH/+.net
>>141
他のレスも読んだらどうだ

149:132人目の素数さん
15/06/15 12:18:46.06 wIc3lRqX.net
>>137
答えは?

150:132人目の素数さん
15/06/15 14:02:26.11 jTvzDREJ.net
>>137
719

151:132人目の素数さん
15/06/15 14:13:39.05 1SLeoFUz.net
冗談は芳江さん

152:132人目の素数さん
15/06/15 22:59:41.61 w9Nq94Ln.net
7×7のマス目のいくつかのマスの中心に、以下の条件を満たすようにゴマを1つ置く。
条件:置かれたゴマのうちのどれか4つを頂点とする長方形で、その辺がマス目の辺に平行なものができてはならない。
最大でいくつゴマを置くことができるか。

153:132人目の素数さん
15/06/15 23:11:35.53 O9+dQNu/.net
なんか日本語おかしいよ

154:132人目の素数さん
15/06/16 00:24:40.43 fqscTCpW.net
>>137
最初地道にやった結果と、
wikipediaの「バーンサイドの補題」を参考にしてやった結果が一致したから
合ってるかな
1493通り

155:132人目の素数さん
15/06/16 00:43:12.01 fqscTCpW.net
>>150
7列からどの2列を選んで重ねても、ゴマのあるマスが2箇所以上重なることがない
という条件なので、多分21個。
例:
(1,1)(1,2)(1,3)
(2,1)(2,4)(2,5)
(3,1)(3,6)(3,7)
(4,2)(4,4)(4,6)
(5,2)(5,5)(5,7)
(6,3)(6,4)(6,7)
(7,3)(7,5)(7,6)

156:132人目の素数さん
15/06/16 01:14:16.63 H1/I840P.net
>>152
俺も地道に計算して1493通りになったんだけど、ネットで見つけた問題の模範解答は違っていた…
どう思う?
URLリンク(www.y-sapix.com)

157:132人目の素数さん
15/06/16 03:30:19.03 fqscTCpW.net
>>154
そのsapixの解答は、明らかに間違ってるな。
(C)以外の(A)の場合と、(D)以外の(B)の場合において、上下反転をダブルカウントしてる。
実際は、(A)も(B)も
(90-3!)/2+3で45通りなので
45*2+(2896-45*2)/2=1493
が正解。
そりゃ「優秀賞に値する答案はいただけませんでした」になるわな(苦笑)
その間違った模範解答をエスパーするのは無理。
sapix大丈夫?

158:132人目の素数さん
15/06/16 03:36:36.67 fqscTCpW.net
(それ、最終回の問題だったのか…とんだ有終の美だな…)

159:132人目の素数さん
15/06/16 03:57:44.00 H1/I840P.net
やはり間違っていたようですね。安心した。
2007年頃に塾のバイトしていたときに、m色n個ずつの円順列や数珠順列を
(m、n)=(2、4)、(3、3)、(3、4)の場合を出題した


160:ことがあったんだけど、 当時の解答の手書きメモと、最近ネットで見かけたsapixの解答が違っていて>>137に書いた次第。 ちなみに私の解法は黒玉の連続する個数で5通りに場合分けして、エレガントとは程遠い解法でしたが…。



161:132人目の素数さん
15/06/16 05:24:18.29 goQtvF3x.net
プログラムでカウントさせたところ、1493通りでした。
ちなみに、色を入れ替えて一致するものも同一視すると297通り

162:132人目の素数さん
15/06/16 06:06:45.29 H1/I840P.net
>>158
ありがとうございます。プログラムは ご自分で作られたのですか?
模範解答と答えが違うとき、まず自分を疑ってしまいがちですが、こんなこともあるのですね。

163:132人目の素数さん
15/06/16 08:49:30.12 deTZhkJL.net
>>159
こんな感じのもので確かめました。
URLリンク(codepad.org)

164:132人目の素数さん
15/06/16 13:35:34.98 TmgIPwFn.net
誰か>>18 >>40 >>66の解き方教えて

165:132人目の素数さん
15/06/16 21:57:51.55 LTpWN3vT.net
>>66 (1)は解けた
(50k^2+20k+2)^2+1=5(10k^2+6k+1)(50k^2+10k+1)
よりn=50k^2+20k+2(k≧1)のときn!はn^2+1で割り切れる
(2)は素数pが4n-1型のとき、((p-1)/2)!≡±1 (mod p) になることまでは分かったが…

166:132人目の素数さん
15/06/17 01:20:30.74 QCqizCQx.net
>>155-157
あまり責めないでやれ。
SAPIXというと、ある年代以降の生まれの人には
絶大な信用があるが、
要するに代ゼミだよと言えば、ある年代以前の人なら
多くを期待すべき相手でないことが解る。
M&Aは、ブランド名のロンダリングでもある。

167:132人目の素数さん
15/06/18 09:44:50.83 XPs4xt6p.net
2015個の連続する正の整数からなる列であって, ちょうど155個の素数を含むようなものが存在することを示せ

168:132人目の素数さん
15/06/18 11:26:36.76 pAuqikyi.net
>>164
nからn+2014までの自然数のうち素数の個数をf(n)とおくと、
f(1)=305であり、
素数定理などから、明らかにf(N)<155となるNが存在する。
ここで、任意の自然数nについて、
f(n+1)-f(n)は、1,0,-1のいずれかなので、
f(n)=155,1<n<Nを満たすnが存在する。
定義域が整数である場合の中間値の定理のようなものですな。
本当はf(N)<155となるNの具体例を示したかったのだが、
いきなりf(500000)=155となることを見つけてしまったので^^;

169:132人目の素数さん
15/06/18 19:54:40.67 /w4mTADd.net
>>165
f(N)<155となるNの存在をいうだけなら素数定理を持ちださなくても
あきらかにf(2016!+2)=0だよね

170:132人目の素数さん
15/06/19 18:55:13.73 n/Pn+0sj.net
>>40は上手くいきそうでいかない
「六角形」の辺を適当に結んで平行云々でパスカルの逆、って流れだと
いまいち綺麗にできない(場合分けが下手?)
数式に持ち込んでもごちゃごちゃ
前提条件が妙に強いからサクッとできるのだろうが

171:132人目の素数さん
15/06/21 14:51:11.58 eRDPXgWJ.net
>>66 (2)
まず, 条件を満たすnを具体的に構成する方法を示す.
kを3以上の奇数とする. k!+1は奇数なのでp|(k!+1)である奇素数pが存在する.
k!+1は1,2,...,kで割り切れず, またk,pはともに奇数なのでp-1>k
ここで, ウィルソンの定理より(p-1)!≡-1(mod p)なので,
-1≡(p-1)!
≡k!*(k+1)*...*(p-1)
≡(-1)*(k+1)*...*(p-1)
≡(-1)^(p-k)*(p-k-1)!
≡(p-k-1)! (∵p-kは偶数)
よ�


172:チてp|((p-k-1)!+1) k+(p-k-1)=p-1<pより, kかp-k-1の一方はp/2より小さい. その小さい方をnとすれば, p|(n!+1)かつ2n<pが成り立つので, このnは条件を満たす. 次に条件を満たすnが無限個存在することを示す. 条件を満たすnとして n_1,n_2,...,n_m が与えられたとき, そのいずれとも異なるn_(m+1)が存在して条件を満たすことを示せばよい. (n_1)!+1,(n_2)!+1,...,(n_m)!+1の素因数全体の集合をPとする. Pの元のいずれよりも大きな3以上の奇数kをとり, 上記の構成法に従ってp,nを定める. このときp>kよりp∉Pなので, nはn_1,n_2,...,n_mのいずれとも異なる. よってn=n_(m+1)とすればよい. 以上より示された.



173:132人目の素数さん
15/06/21 14:59:56.59 eRDPXgWJ.net
正の整数からなる集合Aは次の条件(i),(ii),(iii)を全て満たす:
条件(i):Aは3個以上の元を持つ
条件(ii):a∈Aかつ d|a (d>0)ならばd∈A
条件(iii):a, b∈Aかつ1<a<bならば1+ab∈A
このとき, Aは全ての正の整数を含むことを示せ.

174:132人目の素数さん
15/06/22 20:30:45.44 pYzkOfH1.net
>>169
条件より1<a<bなるa,bが存在して1,a,b,ab+1∈A
a,b,ab+1のうち少なくとも1つは偶数なので2∈A
よって2b+1,2(2b+1)+1∈A
b,2b+1,2(2b+1)+1のうち少なくとも1つは
3の倍数であるかまたは6で割った余りが2
前者の場合3∈A
後者の場合6k+2∈Aとして
3k+1∈A
2(3k+1)+1=3(2k+1)∈A
よって3∈A
ここまでで1,2,3∈Aが示せたので4,5∈Aもいえる
ここでn(≧5)以下の正整数が全てAに属すると仮定する
nが偶数のとき2<n/2∈Aよりn+1∈A
nが奇数のとき2<(n+1)/2∈Aよりn+2∈A
よってn(n+2)+1=(n+1)^2∈Aよりn+1∈A
以上よりAは全ての正整数を含む

175:132人目の素数さん
15/06/22 21:01:14.59 pYzkOfH1.net
>>170
抜けがあったので訂正
>b,2b+1,2(2b+1)+1のうち少なくとも1つは
>3の倍数であるかまたは6で割った余りが2
b≡5(mod 6)の場合これは成り立たないが
このときはb(2b+1)+1≡2(mod 6)がAに属するので
「後者の場合」に帰着する

176:132人目の素数さん
15/06/22 21:16:09.10 pYzkOfH1.net
>よって2b+1,2(2b+1)+1∈A
>b,2b+1,2(2b+1)+1のうち少なくとも1つは
よって2b+1,b(2b+1)+1∈A
b,2b+1,b(2b+1)+1のうち少なくとも1つは
とすればいいだけだった…

177:132人目の素数さん
15/06/23 05:42:15.74 bZvTLbCC.net
>>169の条件(iii)を改変したバージョンも解けたので問題として出しておく
正の整数からなる集合Aは次の条件(i),(ii),(iii)を全て満たす:
条件(i):Aは3個以上の元を持つ
条件(ii):a∈Aかつ d|a (d>0)ならばd∈A
条件(iii):a, b∈Aかつ1<a<bならばab-1∈A
このとき, Aは全ての正の整数を含むことを示せ.

178:132人目の素数さん
15/06/23 23:32:20.59 rY+w350S.net
どことなくコラッツの問題に似てるから
実は解くのが難しいとかそういう話なのかと思ったら
解けるのか

179:132人目の素数さん
15/06/25 21:00:57.54 35Y69c7I.net
表裏の出る確率が均等でないコインが1枚ある。
これを繰り返し投げて出た結果によって、確率1/2の試行を実現したい。
投げる回数の期待値を最小にするにはどうすればいいか。

180:132人目の素数さん
15/06/25 22:22:23.83 2yBiznPm.net
右手か左手に表裏の出る確率が均等でないコインを隠し、選んで貰う

181:132人目の素数さん
15/06/26 10:13:21.94 5yy/K2nU.net
>>175
最初「期待値」の意味がわからなかったけど、例えばこういうことかな。(これが期待値最小かどうかはおいといて)
判定結果は○/×で表すものとします。
偶数回目のみにチェックポイントを設け、以下の判定を行う。
そこまでに投げた回数をN=2^n*a(aは奇数、nは正の整数)とする。
次の判定を、決着がつかない限り、k=1からnまで順に繰り返す。
・N回目とN-2^(k-1)回目のコインの表裏が異なる場合、N回目は表なら○、裏なら×で決着。そうでない場合は決着せず。
有限回数で必ず決着する手段が存在しない以上、「ある条件を満たせば決着」という手法を考え
その条件に至るまでの回数の期待値ってのが問題になるわけね

182:132人目の素数さん
15/06/26 10:42:50.12 5yy/K2nU.net
さっきの


183: >>177 の判定の意味がわかりにくいので補足。 基本となる手法は以下  偶数回目のみチェックする。  直前の2回が「裏表」なら○、「表裏」なら×で決着  それ以外は、その回では決着せず この手法では、決着せずに試行を繰り返さないといけないケースは 2回ずつまとめてみると「表表」もしくは「裏裏」のパターンのみをくりかえす場合。 その決着しないケースをなるべく救済するために、今度は4の倍数回にチェックポイントを設け 直前4回が「裏裏表表」なら○、「表表裏裏」なら×とする。 この手法を追加しても、決着せずに試行を繰り返さないといけないケースは 4回ずつまとめてみると「表表表表」もしくは「裏裏裏裏」のパターンのみをくりかえす場合。 それををなるべく救済するため、8の倍数回にチェックポイントを設け 直前8回が「裏裏裏裏表表表表」なら○、「表表表表裏裏裏裏」なら×とする。 (以下略) というのをまとめた結果。



184:132人目の素数さん
15/06/26 12:09:01.54 IIy/cicI.net
1/2を期待できる方法(小道具を使うが、1回で完了)
コインの表を偶数、裏を奇数に対応づけ、コインを振り、止まった瞬間に時計の秒針を見て
偶数か奇数かをチェック。コインの偶奇と一致するかどうかで判定
ほぼ1/2を期待できる方法
でやすい面を表、でづらい面を裏と表すこととし、表のでる確率をpとする
コインを繰り返し振り、n回目の裏がでたのが、偶数回目だったか、奇数回目だったかで判定
確率pに対応して、下のようなnを採用すれば、最大誤差1%程度になる。
0.99<p<1 なら、n=1で十分。
初めて裏がでるのが偶数回目となる確率=p(1-p)+p^3(1-p)+...=p/(1+p)
初めて裏がでるのが奇数回目となる確率=(1-p)+p^2(1-p)+...=1/(1+p)
0.8<p<0.99 なら、n=2辺りを用いる
二回目の裏がでるのが偶数回目となる確率=(1-p)^2+C[3,1]p^2(1-p)^2+...=(1+p^2)/(1+p)^2
二回目の裏がでるのが奇数回目となる確率=2p/(1+p)^2
0.6<p<0.8 なら、n=3辺り
3回目の裏がでるのが偶数回目となる確率=3p(1-p)^3+C[5,2]p^3(1-p)^3+...=(3p+p^3)/(1+p)^3
3回目の裏がでるのが奇数回目となる確率=(3p^2+1)/(1+p)^3
0.5<p<0.6 なら、n=4
4回目の裏がでるのが偶数回目となる確率=(1-p)^4+C[5,3]p^2(1-p)^4+...=(p^4+6p^2+1)/(1+p)^4
4回目の裏がでるのが奇数回目となる確率=(4p^3+4p)/(1+p)^3

185:132人目の素数さん
15/06/26 12:13:45.71 ya3KuOPO.net
あ、最後の行、ミスってる
×:4回目の裏がでるのが奇数回目となる確率=(4p^3+4p)/(1+p)^3
○:4回目の裏がでるのが奇数回目となる確率=(4p^3+4p)/(1+p)^4
ごらんのように、パスカルの三角形が登場してます。

186:132人目の素数さん
15/06/26 12:44:04.27 /ysslOVn.net
コイン以外のところから、確率1/2の事象を引っ張ってくるのは出題者の意図とはたぶん違うんじゃないかね。
それだったら、コインいらないし……。

187:132人目の素数さん
15/06/26 20:46:11.23 h7iWFEKI.net
>>175
ちょっと考えた
pが既知かつ近似解で良い場合
中心極限定理で適当にやればp=0,1以外はどうにでもなる
pが既知かつ厳密解が欲しい場合
初めて表が出るまでの回数をNとしてNが特定の回数だった場合を
新たに「表」として定義する
N=nの確率はp*(1-p)^(n-1)となるので適当に組み合わせれば
p=0,1以外なら任意の精度で「表」の確率が定義できそう
pが未知の場合
ベイズ的には初回は必ず1/2
と言うのは冗談だがpを推定してから上記の場合に持ち込むのかな

188:132人目の素数さん
15/06/26 20:53:56.32 h7iWFEKI.net
>>182に補足
元のお題は最小回数の作り方だから
pが既知かつ厳密解が欲しい場合については
N回投げて各出目の確率の和が1/2になる
組み合わせが見つかったらそれが最小のN

189:132人目の素数さん
15/06/27 00:30:06.71 /+u9NzxP.net
>>175 は、確率は未知という設定じゃないとつまんないので、自分はそっちで考える。
確率は未知であっても、確実に1/2の確率を実現できる方法を考えて、
回数の期待値は、未知だけど実際には存在する確率pの関数として表す。
「期待値最小」ということを厳密にどう判定するかは難しいが、
まずはよりよい関数となる手法を考え、もしかしたら
「pが未知でも成り立つ手法の中では、どんなpに対しても最小の期待値を持つ」手法が
存在するのかもしれない。
ちなみに、>>178 の「基本となる手法」で期待値を計算すると1/(p(1-p))となる。
(p=1/2で最小値4をとる)
>>177 の手法ではそれよりもどんなpにおいても小さい値になるのは明らかだが、
うまい計算方法が見つからなくて困ってる。

190:132人目の素数さん
15/06/27 03:03:16.58 /+u9NzxP.net
>>177 の期待値
f(p) = Π[n=0,∞](1+p^(2^n)+(1-p)^(2^n))
となるようだ。
>>178 の「基本となる手法」の期待値
g(p) = 1/(p(1-p))
と比較すると、こんな感じ。
p g(p) f(p)
0.1 11.111 10.585
0.2 6.250 5.698
0.3 4.762 4.186
0.4 4.167 3.574
0.5 4.000 3.401

191:132人目の素数さん
15/06/27 03:30:28.63 /+u9NzxP.net
pが未知なら、>>177が最強な気がしてきた。
誰か証明もしくは反証よろしく

192:132人目の素数さん
15/06/27 09:14:57.33 S/MSoatr.net
>>177の判定原理は表と裏の回数が等しい試行を組にして
「表」「裏」と名づけていると見ることができる
ゆえに>>178が最短の判定方法となっていることが証明できる

193:132人目の素数さん
15/06/27 12:56:11.26 AqwryHTX.net
177(178)の方法において、どの出方はAが勝ちか、どの出方はBが勝ちか決めてみることにする。
その決め方は複数(多数)候補があるけれど、いいやりかたを選べば、
(177(178)の方法を使ったときに)ある場面において、表がでても裏が出てもAが勝ち(あるいはBが勝ち)
という場面を作り出すことができそう。
そういう場面が出来たなら、そこは実はコインを投げる必要がないということになる。
そして期待値は下がる。
となりそうな気がする。

194:132人目の素数さん
15/06/27 14:30:27.03 /+u9NzxP.net
>>188
なるほど。>>177 のルールのままだと、最後が表なら○と決めているので
最後まで決着しないけど、判定の部分のルールをたとえば
・N回目とN-2^(k-1)回目のコインの表裏が異なる場合、
 kが奇数ならば、N回目は表なら○、裏なら×で決着。
 kが偶数ならば、N回目は表なら×、裏なら○で決着。
としておけば、
表表裏
となった時点で、4回目は表でも裏でも○になるから
追加ルールとして
・その後のコインの表裏によらず、○か×かが確定した時点で、コインは投げない
というのを入れとくと、さらに回数の期待値は減るわけですね。
ううむ、最強からはほど遠かったか。

195:132人目の素数さん
15/06/27 14:33:16.85 /+u9NzxP.net
(さすがに、>>189 のルールでの期待値の計算はあきらめた)

196:132人目の素数さん
15/06/27 14:50:27.11 /+u9NzxP.net
>>188-190
よく考えたら、チェックポイントの2手以上前に○×が確定することは
ありえない(最後の2回が表裏と裏表で必ず○×が異なる)ので、
>>177のルール変更を
・N回目とN-2^(k-1)回目のコインの表裏が異なる場合、
 N-1回目が表なら○、裏なら×で決着。
とでもしておくと、元のルールで表でも裏でも決着するケースでは
確実に1手減らすことができますね。
この方向性での改善としてはこれが最良かな。

197:132人目の素数さん
15/06/27 16:41:16.45 imKgYOrh.net
n次元空間にn+1個の頂点があり、全ての面が正三角形となる超立体の体積をエレガントに求めよ。

198:132人目の素数さん
15/06/27 19:40:48.41 n9T/LEaD.net
f(n)=2n^2+29と定める.
f(0),f)1),f(2),f(3)はいずれも素数であることが分かっている.
このとき,f(4),f(5),...,f(28)も全て素数であることを示せ.
ただし, 各fの値を実際に求めたり, 素数で順に割ったりしてはならない.

199:132人目の素数さん
15/06/27 19:41:47.15 iChne//v.net
>>175
これ、極端に考えればp=1.0でも題意を満たす必要があるんじゃ?

200:132人目の素数さん
15/06/27 20:29:05.21 iv70QRnH.net
p=1.0の場合はどのみち不可能なんだから期待値は∞ってことで問題なくね?

201:132人目の素数さん
15/06/27 21:37:06.11 1W0Ez/9a.net
(1)



202:自然数nに対して (Σ[k=1..n],1/k)=P(n)/Q(n) をみたす実数係数の多項式P(x),Q(x)は存在しないことを示せ (2) 数列a(n)を a(1)=2,a(n+1)=(1/(a(1)*a(2)*a(3)*....a(n)))-1 として定義する。 この時、nが偶然ならば、数列a(n)は定数数列であることを示し、その値を求めよ



203:132人目の素数さん
15/06/27 21:43:26.06 /+u9NzxP.net
>>192
1辺が1のn次元の正単体のn次元の体積をV(n),中心から各頂点までの距離をR(n)とする。
V(1)=1,R(1)=1/2
n+1次元空間内に1辺1のn次元の正単体X(n)を配し、X(n)の各頂点から距離1となる点Aをとると、
AとX(n)はn+1次元の正単体X(n+1)を構成する。
AからX(n)におろした垂線の足をM、X(n+1)の中心をO、X(n)の1つの頂点をBとすると、
OA=OB=R(n+1)、MB=R(n)であり、
X(n+1)の各頂点に重さ1の質点を置いた時の重心がOであることからOA:OM=n+1:1となり、
OM=R(n+1)/(n+1)
OB^2-OM^2=MB^2(三平方の定理)より、整理すると(n(n+2)/(n+1)^2)(R(n+1))^2=(R(n))^2
∴ ((n+2)/(n+1))(R(n+1))^2=((n+1)/n)(R(n))^2=…=(2/1)(R(1))^2=1/2
∴ (R(n))^2=n/(2(n+1))
AM=((n+2)/(n+1))R(n+1)より、
V(n+1)=(1/(n+1))・AM・V(n)=((n+2)/(n+1)^2)R(n+1)V(n)
(V(n+1))^2=((n+2)^2/(n+1)^4)((n+1)/(2(n+2)))(V(n))^2=((n+2)/(2(n+1)^3))(V(n))^2
n≧2において
(V(n))^2=Π[k=1,n-1]((k+2)/(2(k+1)^3))
=((n+2)!/2)/(2^(n-1)・(n!)^3)=(n+1)/(2^n・(n!)^2)
∴ V(n)=(1/n!)√((n+1)/2^n)
n次元の錐体の体積が (1/n)・底面積・高さ であることは断りなく使った。
エレガント、ではない。

204:132人目の素数さん
15/06/27 21:45:05.79 1W0Ez/9a.net
(3)
面積および外接円の半径が全て整数であるような三角形は無数に存在することを示せ。
ただし相似な三角形は除く。

205:132人目の素数さん
15/06/27 21:48:38.69 /+u9NzxP.net
(数式を、カッコ多用ではなくちゃんと紙に書けば、そんなにゴチャゴチャはしてないんだよ…)

206:132人目の素数さん
15/06/27 21:52:29.64 /+u9NzxP.net
>>198
辺の長さは整数じゃなくていいのか?

207:132人目の素数さん
15/06/27 21:58:42.68 1W0Ez/9a.net
>>200
どちらでも構わない

208:132人目の素数さん
15/06/29 04:10:45.50 jBA8xQxN.net
>>196
(1) そのようなP(x),Q(x)が存在するとして矛盾を導く。
lim[n→∞](1/log n)Σ[k=1..n],1/k=1であるから、
lim[n→∞](1/log n)(P(n)/Q(n))=1 でなければならないが、
P(x)とQ(x)の最高次数に注目して計算すると矛盾することが分かる。■
(2) nが偶数なら a(n)=-1/2, nが3以上の奇数なら a(n)=-2が
成り立つことが数学的帰納法で証明できる。■

209:132人目の素数さん
15/06/29 04:31:16.19 jBA8xQxN.net
>>198
そのような三角形の無限列であって、互いに相似でないものが
構成できることを証明しようかと思ったが、別にその必要はなかった。

(3) 面積と外接円の半径が整数であるような三角形の集合をMと置く。
M上の二項関係~を以下のように定義する。
a,b∈Mに対して、a~b ⇔ aとbは相似.
このとき、~はM上の同値関係となることが分かる。
a∈Mの同値類を[a]と書くことにする。同値類の集合M/~は
M/~={ [a]|a∈M }と表せる。このM/~が無限集合であることを
示せばよい。以下の補題を使う(証明は後回しにする)。
補題:任意の正整数nに対して、次を満たすA⊂Mが存在する。
・Aはn元集合.
・Aの任意の異なる2元は相似でない.
この補題により、各nに対して対応するA⊂Mを取れば、次が成り立つ。
・{ [a]|a∈A }⊂M/~.
・{ [a]|a∈A }はn元集合.
従って、M/~は少なくともn個の元を含む。nは任意だから、
M/~は無限集合である。最後に、上の補題を証明する。

210:132人目の素数さん
15/06/29 04:43:55.79 jBA8xQxN.net
補題の証明:半径がnの円Sを用意し、S上の3点A,B,Cを、三角形ABCが正三角形であるように取る。
円Sにおける弧BCは2つあるが、その中で短い方の弧をL1とする。L1から両端点B,Cを除いたものをL2とする。
L2上の点Pを任意に取ると、三角形APBについて、次が成り立つことが分かる。
(i) ∠PAB < 60°<∠PBA.
(ii) ∠APB=60°.
(iii) APBの面積をs(P)と置くと、0<s(P)<(3√3/4)n^2 が成り立つ.
(iv) P→Bのときs(P)→0であり、P→Cのときs(P)→(3√3/4)n^2 である.
さて、s(P)はP∈L2に関して連続関数であるから、(iii)と(iv)にも注意して、中間値の定理から、
任意のλ∈(0, (3√3/4)n^2) に対して、s(P)=λを満たすようなP∈L2が存在する。
特に、λが正整数のときを考える。(3√3/4)n^2>nであるから、λとしては
少なくとも1,2,…,nまでが選べる。対応するPをP_1,…,P_n とする。
三角形AP_iBをa_iと置けば、a_iの面積は i であり、a_iの外接円の半径はnである。
従って、a_i∈Mである。A={ a_1,…,a_n } と置けば、このAが題意を満たす。
実際、Aがn元集合であることは明らか。Aの任意の異なる2元が相似でないことは、
a_iの3頂点の角度に注目すればすぐに従う(具体的には(i),(ii)を使う)。■

211:132人目の素数さん
15/06/30 20:34:38.25 H5GoaVHE.net
>>198
3辺の長さを
4n+2, 4n^2*4n, 4n^2+4n+2
とすれば、面積は4n(n+1)(2n+1), 外接円の半径は2n^2+2n+1

212:132人目の素数さん
15/06/30 22:09:05.54 M1LX+grn.net
>>198
0より大きく1未満の任意の有理数 t を持ってきて、それを t=b/a と表したとき
(つまり、aとbは互いに素で、0<b<aの整数)
a^2-b^2,2ab,a^2+b^2
の3数は、原始ピタゴラス三角形の3辺を成す。その二倍形
2(a^2-b^2),4ab,2(a^2+b^2)
は、>>198の条件を満たす。

なお、205の例(4n^2*4nは4n^2+4nの誤植と思われる)は、ここに挙げたもので
a=b+1 としたものにあたる

213:132人目の素数さん
15/07/01 01:01:33.17 rdTrEG2D.net
>>205-206
その答えは、おととい
「高校生が自作問題を世に問うスレ」
の ≫584 に書いといたのと、同じものだな。

214:132人目の素数さん
15/07/03 23:23:02.20 rGXRJhyh.net
一次独立な2つのベクトルx↑、y↑について
|x↑|≦|x↑+y↑|が成り立っているならば
任意の実数a≧1に対して |x↑+y↑|≦|x↑+a*y↑|となることを示せ。

215:132人目の素数さん
15/07/03 23:43:12.41 hJIQsZ5a.net
最近話題のルーローの三角形形の掃除機ロボットを見て思いついた問題。
直径1の正方形の内部で、直径1のルーローの三角形が滑らかに回転するとき、
ルーローの三角形が通過する領域の面積を求めよ。

216:132人目の素数さん
15/07/04 13:02:24.94 fKcIqKgn.net
わりときれいな値になるんだな。
それに検索してみると、この動き自体がなかなかおもしろい。

217:132人目の素数さん
15/07/04 13:20:18.83 ZDm2eXaJ.net
内部に入らない。

218:209
15/07/04 21:29:26.26 TU5VZOTE.net
ちなみに俺は解けなかったぜ

219:209
15/07/04 23:13:12.35 TU5VZOTE.net
解けたかも
2√3+Π/6-3=0.9877…
あってる?

220:132人目の素数さん
15/07/05 00:09:18.45 yb6nmQkj.net
>>213
πが大文字なのを除けば、同じ答えになった。

221:132人目の素数さん
15/07/05 00:26:02.25 xGfPr6DD.net
たぶんそれであってる
URLリンク(mathworld.wolfram.com)
URLリンク(en.wikipedia.org)
URLリンク(ddincrement.blog.shinobi.jp) <


222:small style="color: #999;">👀Rock54: Caution(BBR-MD5:18e3ad85d511352dc19ab55963b20571)



223:209
15/07/05 09:16:02.23 38VAmmOq.net
おお、スッキリした。
正三角形の頂点の軌跡を求めて解いたけど、
頂点以外の部分がこの領域からはみ出ないことを示すのは、
(直感的には明らかだけど)まじめに証明するのは結構大変な気がする。

224:132人目の素数さん
15/07/05 19:10:04.37 xGfPr6DD.net
たしかに証明しろって言われたら
えっ・・・ってなる

225:132人目の素数さん
15/07/05 22:24:37.43 KtOLXaqd.net
>>169の条件(iii)を
「a, b∈Aかつ1<a<bならばa^2+b^2∈A」
に置き換えた場合を考えてみたんだけど、
「4n+3型の素因数をもたない正整数は全てAに属する」
ということが言えそうなのに、惜しくも証明ができない。
Aに必ず含まれるような正整数からなる集合をSとすると
1,2,5∈S
a,b∈Sならばab∈S
が証明できるので、
4n+1型の素数がすべてSに属することを示せればいいんだけど。
とりあえず200以下の4n+1型素数についてはSに属することが確認できた。
あとは誰かに任せた。

226:132人目の素数さん
15/07/05 23:32:25.53 xGfPr6DD.net
コラッツの問題に似てるから
実は超難問みたいな地雷を踏みそうでこわい

227:132人目の素数さん
15/07/08 16:40:03.46 dTJ+Tbfl.net
eを自然対数の底とする.
正の整数nに対して, 関数f_n(x), およびF_n(x)を
f_n(x)=x^n(1-x)^n/(n!), F_n(x)=∑[k=0~2n](-1)^k f_n{k}(x) と定める.
(ただし, f_n{k}(x)はf_n(x)の第k次導関数を表す)
(1) 任意のnに対して, ∫[0 to 1]e^x f_n(x) dx=eF_n(1)-F_n(0) が成り立つことを示せ.
(2) eは無理数であることを示せ.

228:132人目の素数さん
15/07/09 07:56:40.26 cP+R7nhb.net
>>218 ちょっと考えてみたけど、
pを4n+1型の素数とすると
平方剰余の相互法則から、1≦k≦p-1 に対して
n^2 + k^2 = 0 (mod p) となる nが存在する
このnをn(k)とおくと、各kに対してn(k)は2つある
また、aとbが異なるとき、a+b=p なら n(a)=n(b)
それ以外のとき、n(a)とn(b)は全て異なる
n(n(k))=k,p-k が成り立つ
よって、n(k)をうまく選べば、 k → n(k) は
{1,2,・・・,p-1} から {1,2,・・・,p-1} への全単射となる
仮に、各pに対して、{1,2,・・・,p-1} のうち(p+3)/2個以上の数がAに含まれる・・・(※)
が証明できれば、鳩の巣原理より、あるkが存在して、
k,n(k)≠1 かつ kとn(k)が両方Aに含まれる
この時、n(k)^2 + k^2 ∈A となり、 p|n(k)^2 + k^2 より p∈A が示せる
(※)の証明はわかりません

229:132人目の素数さん
15/07/09 16:16:04.07 cP+R7nhb.net
と思ったけど、(※)は成り立ちそうにないな・・・・

230:132人目の素数さん
15/07/19 22:16:09.84 4WcEMeLJ.net
任意の2以上の整数nに対して,
不等式 tan(π/(2n))≦2/((n-1)*n^(1/(n-1)))
が成り立つことを示せ.

231:132人目の素数さん
15/07/21 11:08:25.82 kYxHbe+8.net
タスケテ。
複素数xyzがx+y+z=1,x³+y³+z³=10,xyz=2の時
xy+yz+zxとx²+y²+z²を求めよ。
またこの時x,y,zの値の組をそれぞれ求めよ。

232:132人目の素数さん
15/07/21 12:32:55.45 yFoYYNcQ.net
スレ違い。最低限のルールを守れないやつは相手にしない

233:132人目の素数さん
15/07/21 22:33:29.92 rZmsaMCj.net
>>218に書いた問題、証明できたっぽい。
あらためて書くと、こういう問題。
[問題]
正の整数からなる集合Aは次の条件(i),(ii),(iii)を全て満たす:
条件(i):Aは3個以上の元を持つ
条件(ii):a∈Aかつ d|a (d>0)ならばd∈A
条件(iii):a, b∈Aかつ1<a<bならばa^2+b^2∈A
このとき, Aは4n+3型の素因数をもたない正整数を全て含むことを示せ.
証明は結構長くなってしまったけど、せっかくなので投稿する。
[1,2,4∈Aの証明]
1<a<bなるa,b∈Aをとるとa^2+b^2,b^2+(a^2+b^2)^2∈Aで、
b,a^2+b^2,b^2+(a^2+b^2)^2のどれかは4以上の偶数(=2dとおく)。
2d∈Aより2∈Aおよび(2d)^2+2^2=4(d^2+1)∈Aとなり、1,2,4∈Aがいえる。
[Sの定義]
{1,2,4}から出発し、この集合に属する数の約数(>0)をこの集合に付け加える、
またはこの集合に属する2つの数(≧2)の平方の和をこの集合に付け加える、
ということを繰り返して得られる数全体からなる集合をSとする。
Sは明らかに条件(i)~(iii)を満たす最小の集合である。
つづく。

234:132人目の素数さん
15/07/21 22:34:56.32 rZmsaMCj.net
[a∈S⇒2a∈Sの証明]
a=1のときは明らか。a≧2とする。
あるk(≧2)が存在してa∈Sかつak∈Sならば、
2a|akまたは2a|a^2+(ak)^2より2a∈Sがいえる。
このようなkが存在しないような最小のa∈Sがあると仮定すると、
Sの定義より、あるb,c∈Sによってa=b^2+c^2と表せる。
b,c<aより2b,2c∈Sなので、(2b)^2+(2c)^2=4a∈Sとなり矛盾。
以上よりa∈S⇒2a∈Sが示せた。
[a,b∈S⇒ab∈Sの証明]
a,b∈Sとすると2a,4a∈Sである。
Sの定義で述べた方法によってbを生成する数列が存在するが、
この数列の各項をa倍したものを考えると、これはabを生成する数列となる。
(x,y,x^2+y^2をa倍するとax,ay,a(x^2+y^2)となるが、
(ax)^2+(ay)^2からa(x^2+y^2)が得られるので問題ない。)
よってSの定義によりab∈Sである。
[Sの性質]
a∈Sとすると、2a∈Sより(2a)^2+2^2=4(a^2+1)∈Sからa^2+1∈Sがいえる。
またa^2∈Sおよび2a^2∈Sもいえる。
これにより、Sにおいては条件(iii)の1<a<bは不要となる。
ここまでをまとめると、Sは次の性質をもつ。
(1)1,2,4∈S
(2)a∈Sかつd|a(d>0)ならばd∈S
(3)a,b∈Sならばa^2+b^2∈S
(4)a,b∈Sならばab∈S
る。

235:132人目の素数さん
15/07/21 22:35:54.68 rZmsaMCj.net
[Sの元は4n+3型の素因数をもたないこと]
p=4n+3なる素数pについて、p|aなるa∈Sが存在すると仮定すると、
b^2+c^2≡0(mod p)なるb,c∈S(pの倍数ではない)があって、
b^2≡(-1)c^2(mod p)となるが、-1はmod pで平方非剰余なので矛盾。
よってSの元の素因数は2または4n+1型の素数となる。
よってもし
「任意の4n+1型素数はSに属する」
ということがいえれば、Sの性質(1),(4)より
「Sは4n+3型の素因数をもたない正整数からなる集合である」
といえ、Sの元が全て確定する。
[Mの定義]
4n+1型素数でSに属さないものがあると仮定し、その最小のものをpとする。
Sの元をpで割った剰余類として得られるもの全体からなる集合をMとする。
Mは
Z/pZ={[0],[1],…,[p-1]}([a]はaを代表元とする剰余類)
の部分集合である。
pはSに属さないので、[0]はMの元ではない。
なお、以下の記述においてaと[a]を区別しない場合がある。
[Mの性質]
Sの性質(1),(3),(4)はそのまま(剰余類の演算として)Mにもあてはまる。
ただし(2)はMにおいては使えなくなる。
また、pより小なる4n+1型素数は全てMの元であり、
Sの性質(4)より、これらおよび[2]からなる積は全てMの元である。

236:132人目の素数さん
15/07/21 22:36:27.59 rZmsaMCj.net
[Mは乗法に関して巡回群であること]
Mは乗法について閉じており、x∈Mなるxについてxの冪は全てMに属する。
x^m=1なるmが存在し、x^(m-1)がxの逆元となる。
よってMは乗法に関して群である。
とくにMはZ/pZ-{[0]}(巡回群)の部分群なので、あるg∈Sにより
M={[1],[g],[g]^2,…,[g]^(m-1)}
と表される。ただしmはMの位数であり[g]の位数である。
[m≡2(mod 4)の証明]
mが奇数と仮定すると、Mの任意の元[a]=[g]^kについて、
[a+1]=[a]+[1]=[g]^k+[1]={[g]^(m+1)}^k+[1]={[g]^(k(m+1)/2)}^2+[1]^2∈M
がいえるが、これにより[0]∈Mとなり矛盾。
mが偶数のとき、{[g]^(m/2)}^2=[1]より[g]^(m/2)=[-1]がいえる。
とくにmが4の倍数と仮定すると、{[g]^(m/4)}^2=[-1]より


237: {[g]^(m/4)}^2+[1]^2=[0]∈Mとなり矛盾。 以上よりm≡2(mod 4)である。 このことから、[-1]は[g]の奇数冪となる。 [q,rの仮定] q<r<pなる素数q,rが存在して[q],[r]はMに属さないと仮定する。 (pはMの定義で登場した、Sに属さない最小の4n+1型素数) ただしrより小なるq以外の素数は全てMに属するとする。 q,rは4n+3型の素数である。



238:132人目の素数さん
15/07/21 22:36:59.06 rZmsaMCj.net
[命題P]
「rより小なるq以外の任意の素数sについて、
sがmod qで平方剰余ならば[s]は[g]の偶数冪
sがmod qで平方非剰余ならば[s]は[g]の奇数冪
である」
という命題Pを考える。
Pを満たさないような最小のsが存在すると仮定する。
このとき、[-1]が[g]の奇数冪であることから、
sはmod qで平方剰余であり、かつ[-s]は[g]の偶数冪
-sはmod qで平方剰余であり、かつ[s]は[g]の偶数冪
のいずれかが成り立つ。
前者の場合、s≡a^2(mod q)なるa(1≦a≦(q-1)/2)があり、
[-s]=[g]^(2k)と表せる。
よって[a^2-s]=[a]^2+([g]^k)^2∈Mとなるが、
(a^2-s)/qは整数でありその絶対値はqより小さいので
[(a^2-s)/q]∈Mであるから、
[q]=[a^2-s]*[(a^2-s)/q]^(m-1)∈M
となって矛盾(ここでmはMの位数)。
後者の場合も、sと-sを入れ替えて同様に矛盾。
したがって命題Pは成り立つ。
[命題Pからいえること]
平方剰余は乗法性をもつので、
「qの倍数を除いて、rより小なる任意の正整数sについて、
sがmod qで平方剰余ならば[s]は[g]の偶数冪
sがmod qで平方非剰余ならば[s]は[g]の奇数冪
である」
といえる。

239:132人目の素数さん
15/07/21 22:37:21.75 rZmsaMCj.net
[q,rの仮定による矛盾]
(r+q)/2≡(r-q)/2(mod q)より、
(r+q)/2,(r-q)/2がともに[g]の偶数冪であるか、
または、-(r+q)/2,-(r-q)/2がともに[g]の偶数冪である。
よって[(r+q)/2]+[(r-q)/2]=[r]∈M
または[-(r+q)/2]+[-(r-q)/2]=[-r]∈Mより[r]∈M
となって矛盾。
[[1],[2],…,[p-1]∈Mの証明]
Mに属さない素数でpより小なるものが存在するならばただ1つである。
これをqとすると、(p+q)/2はpより小さくqの倍数でないので
[q]=[p+q]=[(p+q)/2]*[2]∈M
となって矛盾。
したがって、pより小なる任意の素数がMの元であり、
それらの積もMの元であるから[1],[2],…,[p-1]∈M
[Mは存在しない]
pは4n+1型の素数なので、p=a^2+b^2を満たすa,bが存在する。
よって[a],[b]∈Mより[a]^2+[b]^2=[p]=[0]∈Mとなって矛盾。
したがって、Mの定義を満たすpは存在しない。
すなわち、「任意の4n+1型素数はSに属する」。おしまい。

240:132人目の素数さん
15/07/22 00:36:28.04 7w9t1PZg.net
4=b^2+c^2.

241:132人目の素数さん
15/07/22 07:32:30.94 qRulk97x.net
>>232
>>226で4∈Aは証明してある。
4自体がb^2+c^2と表せる必要はない。

242:132人目の素数さん
15/07/28 00:04:52.15 V0v013Ov.net
プログラムの問題
入力ストリームと出力ストリームととn個のスタックがある。
n個のスタックを使って入力の順番を入れ替えて出力へ出すことを考える。
1ステップで次のことができるとする
(1)入力ストリームから一文字取り出しスタックへ積む
(2)スタックから一文字取り出しほかのスタックへ積む
(3)スタックから一文字取り出し出力ストリームへ出力する
n個のスタックを使うと入力k文字に対して任意の順番に入れ替えて出力できるとき
n個のスタックはk文字互換完備であるという。
ある定数cに対しc個のスタックが任意の有限の数mに対しm文字互換完備であるとき
c個のスタックは任意互換完備であるという。
任意互換完備となる定数cは存在するか?
存在するとしたらその最少の数はいくつか?

243:132人目の素数さん
15/07/28 02:28:28.92 QlC/V4UF.net
2

244:132人目の素数さん
15/07/28 03:03:42.46 dO/BAI9e.net
スタックって何かわからんハノイの塔みたいなことが出来るってことでいいのか

245:132人目の素数さん
15/07/28 06:14:44.23 A50AzsVE.net
思考停止のことじゃない?

246:132人目の素数さん
15/07/28 08:22:48.08 V0v013Ov.net
同じスタックに何回も積みなおしていいんなら2個のスタックで簡単にできちゃうなぁ
各スタックに番号を振って、スタックからスタックへ積みなおすのは
取りだすスタックが積むスタックより番号が若いときに限る、
としたらちょっとは面白くなるかな?

247:132人目の素数さん
15/07/29 16:20:02.76 CZbY/wc3.net
(cos(2π/7))^(1/3)+(cos(4π/7))^(1/3)+(cos(8π/7))^(1/3)の値を求めよ.

248:132人目の素数さん
15/07/29 17:11:12.92 PHmkOzke.net
234-238のスタック2個っていうのは
入力から文字 x_i を取り出す前に
最終的な出力での登場位置が x_i より早い文字をスタック1に
最終的な出力での登場位置が x_i より遅い文字をスタック2に
集めるみたいなことをしてけばいいってことかな
スタック1個だと、x_1x_2x_3->x_3x_1x_2 みたいなことができなそうだな

249:132人目の素数さん
15/07/29 19:47:09.55 s8W1tV31.net
スタック2個あれば取り出したい文字の上に積んであるやつを全部もう一個のスタックに移せば好きな文字が取り出せる。

250:132人目の素数さん
15/07/29 19:52:11.28 /rcHIzs4.net
むしろ、スタック1つでできる置換できない置換の判別法が知りたい。簡明なものがあるか?

251:132人目の素数さん
15/07/29 20:31:05.18 s8W1tV31.net
スタック1個なら入力からスタックへ積むかスタックから出力へ出すかだけだから、
探索しても分岐は起きないんじゃない?

252:132人目の素数さん
15/07/29 22:18:24.98 PHmkOzke.net
ああ
スタックへの積み方を工夫する必要すらないのか
スタックが2つあれば、取り出したいものをどんなタイミングでも取り出せる

253:132人目の素数さん
15/07/29 22:41:11.60 zneU1ISF.net
>>234
スタックを2個として、入力長Mの任意の置換に対して
a)最大スタック操作回数が最小となる手順とその回数
b)平均スタック操作回数が最小となる手順とその回数

254:132人目の素数さん
15/07/30 04:50:38.94 2OyXzzbU.net
>>237
ギャザか

255:132人目の素数さん
15/07/31 22:10:58.36 xqLCoXx2.net
スタックの操作の総数<m文字の置換の総数
がいえれば任意互換完備がないことが言えるかな?
無理筋かな?

256:132人目の素数さん
15/08/01 00:55:39.15 XcDx3Z/K.net
(a-x)(b-x)(c-x)......(z-x)=?

257:132人目の素数さん
15/08/01 01:32:08.16 vYFLauxI.net
夏よのぉ…

258:132人目の素数さん
15/08/01 02:02:17.28 6mU/08Ur.net
1/(a-x)(b-x)(c-x)......(z-x)=?

259:132人目の素数さん
15/08/06 22:03:58.71 oMuFm5JZ.net
一辺の長さが1の正四面体に内接する球の半径を求めよ

260:132人目の素数さん
15/08/07 00:18:58.40 eaPa7vGl.net
一辺の長さが1の正四面体に内接する球の直径を求めて1/2をかければいいんじゃね

261:132人目の素数さん
15/08/07 00:23:09.54 hrxJfg1J.net
表面積×r×1/3=体積

262:132人目の素数さん
15/08/07 00:35:20.90 q1KsZIY4.net
正四面体A(1,1,1),B(1,-1,-1),C(-1.1.-1),D(-1.-1.1)
正四面体ABCDの1辺の長さ2√2
原点から平面BCDx+y+z+1=0までの距離√3/3
x:√3/3=1:2√2 x=√6/12

263:132人目の素数さん
15/08/16 15:05:36.67 Mpo3tyZH.net
cos(2π/n)が有理数係数の499次以下の方程式の解としては表せず、500次方程式の解としては表せる最小の自然数nを求めよ

264:132人目の素数さん
15/08/17 17:57:52.99 nbwm9TMT.net
ルーレットで赤か黒に賭けて勝つ確率は、どちらも9/19。
毎回1ドルずつ賭け、元金900ドルを1000ドルに増やしたい。
1000ドルになるか、0ドルになるまで続ける。
p=9/19、x=900、y=1000 とおくとき、1000ドルに達する確率は
(((1-p)/p)^x-1)/(((1-p)/p)^y-1) で表せることを証明せよ。

265:132人目の素数さん
15/08/17 19:48:33.53 5vZcEIGg.net
>>256
3SATをランダムウォークしたときに解にたどり着く確率みたいなもんか?

266:132人目の素数さん
15/08/17 20:42:52.40 5vZcEIGg.net
pに1/2を代入して確かめてみようとしたら0割になったでござる。
怪しいな、ほんとに式あってる?
1/2が特殊な値になる理由がわからないんだが。

267:132人目の素数さん
15/08/17 21:41:15.35 nbwm9TMT.net
P-1/2なら0になっても仕方ないでしょ。

268:132人目の素数さん
15/08/17 21:56:22.05 5vZcEIGg.net
なぜ?
式が正しいなら勝つ確率が赤黒どちらも1/2のときも成り立たないとおかしいだろが。

269:132人目の素数さん
15/08/17 23:21:39.04 5vZcEIGg.net
URLリンク(research.preferred.jp)
とりあえず参考になるかもしれないから3SATランダムウォークのページ張っとくわ
そんな簡単�


270:ネ式にはならねーんじゃねーの 2項係数とか出てきそう



271:132人目の素数さん
15/08/18 03:35:25.69 wBRgC8p/.net
>>258
さきに分母分子 ((1-p)/p)-1 で割ればいい
ちなみに 9/10 になるぞ

272:132人目の素数さん
15/08/18 19:41:02.65 MskCv1Rn.net
どれに何を代入すると9/10になるって?

273:132人目の素数さん
15/08/18 20:52:40.48 Mzx5k9aX.net
父親と母親の血液型は共にAOです。
2人の間には子が1人います。
①子の血液型がAOである確率は?
②子の血液型を調べると、A型(AAまたはAO)であることが分かった。
この子の血液型がAOである確率は?

274:132人目の素数さん
15/08/19 00:11:37.17 xDAP6+8Q.net
それは、数学じゃない。
生理学の板で訊け。
計算以前に、
配偶子の接合率、受精卵の着床率、胎児の成育率等
に対する血液型遺伝子の影響について
データが必要になるからな。

275:132人目の素数さん
15/08/19 00:31:53.34 iEpfrIWD.net
そういうこと聞いてるんじゃないだろ

276:132人目の素数さん
15/08/19 00:42:11.10 pWhVseNF.net
ていうか、別に質問じゃなくて出題してるんだろうに

277:132人目の素数さん
15/08/19 05:29:44.81 JCfyF7oM.net
>>263
(((1-p)/p)^900-1)/(((1-p)/p)^1000-1)
の分母分子を ((1-p)/p)-1 で割ったもの
に p=1/2 を代入
(A^n-1)/(A-1)=A^(n-1)+A^(n-2)+…+A+1
くらい知ってるよな?
p=1/2 は「特殊な値」じゃないんだよ
いわゆる除去可能特異点だ
lim_{p→1/2} (((1-p)/p)^900-1)/(((1-p)/p)^1000-1) = 9/10

278:132人目の素数さん
15/08/19 05:49:06.29 M30G+BZt.net
>>264
中学の宿題です。宿題は質問スレに書いてください。

279:132人目の素数さん
15/08/19 12:32:34.01 PxSTIIXg.net
cos(n°)が有理数係数の二次方程式の解として表せる最小の自然数nを求めよ

280:132人目の素数さん
15/08/19 22:47:59.59 9q/Al0IK.net
>>268
計算機で検算しようとしたけど値が収束するのかなり遅いっぽいね。
漸化式はかなり複雑なんだが。
どうやって極限もとめるのかアイディアわかない。

281:132人目の素数さん
15/08/19 23:07:41.48 9q/Al0IK.net
x,yに小さな値入れて試してみたけどやっぱ値合わねぇなぁ
俺がなんか間違ってんのかなぁ

282:132人目の素数さん
15/08/19 23:10:44.74 9q/Al0IK.net
値合ったっぽい

283:132人目の素数さん
15/08/19 23:20:13.20 9q/Al0IK.net
計算機の検算では>>256の式は正しいっぽい。
どうやって導き出すのかはさっぱりわからんが。

284:132人目の素数さん
15/08/19 23:44:32.69 xl3Qr54D.net
n=0,m=900からスタートし、m=0になることがないように移動し、n回目に初めてmが1000となる
経路の数をC(n,1000)として、n回目に1000ドルになる確率は
P(n,1000)=C(n,1000)(9/19)^n

285:132人目の素数さん
15/08/19 23:57:41.89 eYTQUPX+.net
遷移行列の固有ベクトル計算したら((1-p)/p)^nの項が
ずらっと出てくるから真面目に展開すれば解けると思うよ

286:132人目の素数さん
15/08/20 22:45:14.68 art7FZLZ.net
あくしろよ!

287:132人目の素数さん
15/08/20 23:13:30.49 xC1gH3/Y.net
>>264
①2/4
②2/3

288:132人目の素数さん
15/08/21 05:26:12.66 cSey0xr3.net
>>256
どうやって証明するん?あく答えろよ!

289:132人目の素数さん
15/08/21 10:52:26.15 cSey0xr3.net
あくしろよ

290:132人目の素数さん
15/08/21 13:07:14.28 2OkXIMlt.net
命令すんな

291:132人目の素数さん
15/08/21 18:22:13.66 cSey0xr3.net
あくしてね

292:132人目の素数さん
15/08/21 21:02:40.64 cSey0xr3.net
あくあく!

293:132人目の素数さん
15/08/22 04:43:36.55 fYdC/ab3.net
>>256
あくおしえろよ!
>>261
何か言うことはないの?ああ?

294:132人目の素数さん
15/08/23 10:38:50.36 nzgmHyP9.net
URLリンク(suseum.jp)
これコンテスト問題にしては面白い
高級な匂いがするし

295:132人目の素数さん
15/08/25 04:40:01.08 QdxBqZp1.net
>>285
n≡r (mod p-1)
r=0,1,...,p-2
とするとき、rが奇数だとダメで、r=2だとOKであることはすぐ示せるのだが、
rが2以外の偶数の場合がよくわからない。

296:132人目の素数さん
15/08/25 21:03:17.71 37rXHgeW.net
偏りのない1枚のコインを繰り返し投げるとき、表がn回連続するまでの投げる回数の期待値を求めよ。

297:132人目の素数さん
15/08/26 15:52:24.71 soY25NWM.net
>>287
期待値が有限値であることを仮定して、それをa(n)とおく
表がn回連続した状態からn+1回連続するまでに投げる回数の期待値は
1+a(n+1)/2と表せるので,
a(n+1)=a(n)+1+a(n+1)/2、すなわち
a(n+1)=2a(n)+2
という漸化式が成り立つ
これとa(0)=0より
a(n)=2^(n+1)-2

298:132人目の素数さん
15/08/26 19:46:25.90 9nc0affB.net
n=2~4までの期待値
31/4(n=2)、88(n=3)、416(n=4)

299:132人目の素数さん
15/08/26 20:23:09.30 qCO/zAhu.net
意外と多いな。
表だけだからか?

300:287
15/08/26 20:32:01.77 BOAIrO3E.net
正解です。私も漸化式を立てる同じ解法でした。
問題を次のように変えたものを考えていますが、まだ解けていません。
偏りのない1枚のコインを繰り返しn回投げるとき、表が連続する最大回数の期待値を求めよ。

301:132人目の素数さん
15/08/26 21:14:00.77 9nc0affB.net
n回投げたときに、表の確率をq(n)、裏となる確率をt(n)とすると
q(n)=t(n-1)/2
t(n)=(q(n-1)+t(n-1))/2
t(n+2)=t(n+1)/2+t(n)/4
t(1)=1/2 t(2)=1/2
T(n)=t(n)*2^nとするとT(n)はフィボナッチ数列であり
T(n+2)=T(n+1)+T(n)
T(0)=1 T(1)=1
となる。
n回投げたときに3回連続表が出る確率をp(n)とすると
2回連続するのは、表が出てから裏表表と出る場合か
裏が出てから2回表が連続する場合だから
p(n)=q(n-3)/8+t(n-2)/4
q(n)=t(n-1)/2から
p(n)=t(n-4)/16+t(n-2)/4
P(n)=p(n)*2^nとすると
P(n)=T(n-2)+T(n-4)=2*T(n-2)-T(n-3) (n≧5)
が成立する。
t(n)=C1((1+√5)/4)^n+C2((1-√5)/4)^n
t(1)=1/2 t(2)=1/2から
C1=(5+√5)/10 C2=(5-√5)/10
t(n)=(5+√5)((1+√5)/4)^n/10+(5-√5)((1-√5)/4)^n/10
E(n)=Σ[k=2,n]p(k)*k=p(2)*2+p(3)*3+p(4)*4+Σ[k=5,n]p(k)*k
=1/4*2+1/8*3+1/8*4+Σ[k=5,n]p(k)*k
=11/8+51/8=31/4

302:132人目の素数さん
15/08/26 22:29:07.04 soY25NWM.net
すみません、 >>289 >>292 さんはどの問題の話をされているのでしょうか?
>>291
念のため確認ですが、正解というのは >>288 のことでいいのですよね

303:132人目の素数さん
15/08/27 22:33:42.84 LWtuunFN.net
>>292
2行目で既に分からないのですが…

304:132人目の素数さん
15/08/27 22:36:16.76 LWtuunFN.net
>>292
> n回投げたときに、表の確率をq(n)、裏となる確率をt(n)とすると
どういうこと?
n回投げたときに、n回目が表の確率をq(n)ということなのかな?

305:132人目の素数さん
15/08/27 22:46:51.26 gn1uHFUy.net
>>295
この解は以前に検討して書いたもので正確性は定かではありません。
2回連続して表が出ると試行が終わるので、q(n)はn回目の試行で表が出て
n>1ではn-1回目に裏になっている確率という意味です。

306:132人目の素数さん
15/08/27 22:49:33.65 gn1uHFUy.net
>>292 自己レス、11行目を
n回投げたときに2回連続表が出る確率をp(n)とすると
に訂正

307:132人目の素数さん
15/08/27 23:01:04.87 LWtuunFN.net
>>291
> 偏りのない1枚のコインを繰り返しn回投げるとき、表が連続する最大回数の期待値を求めよ。
念のため、n=3 の場合で説明する。
表が連続する最大回数を kとおく。表を○、裏を×で表す。
 k=0のとき、×××となる確率は、1/8
 k=1のとき、○××、×○×、××○、○×○となる確率は、4/8
 k=2のとき、○○×、×○○となる確率は、2/8
 k=3のとき、○○○となる確率は、1/8
したがって、表が連続する最大回数の期待値 E(3) は、
 E(3) = 0・(1/8) + 1・(4/8) + 2・(2/8) + 3・(1/8) = 11/8

308:132人目の素数さん
15/08/28 00:00:14.03 pJoVXbh5


309:.net



310:132人目の素数さん
15/08/28 00:08:09.53 pJoVXbh5.net
>>288>>291 で話が完結していることに気付いていないのか
あえて無視しているのか、何がやりたいんだ >>292

311:132人目の素数さん
15/08/28 04:18:33.21 LeKTMziP.net
>>298
表が連続する最大の回数の期待値は、表がn回連続するまでの回数の期待値とは違う。
>>300
前に検討した結果と異なるから書いているだけ。

312:287=298です
15/08/28 05:23:15.87 UDTInPuv.net
>>301
> 表が連続する最大の回数の期待値は、表がn回連続するまでの回数の期待値とは違う。
そんなこと分かりきっていますが…

313:132人目の素数さん
15/08/28 05:26:14.98 UDTInPuv.net
整理しておきます。
問題>>287
> 偏りのない1枚のコインを繰り返し投げるとき、表がn回連続するまでの投げる回数の期待値を求めよ。
解答>>288
> 期待値が有限値であることを仮定して、それをa(n)とおく
> 表がn回連続した状態からn+1回連続するまでに投げる回数の期待値は
> 1+a(n+1)/2と表せるので,
> a(n+1)=a(n)+1+a(n+1)/2、すなわち
> a(n+1)=2a(n)+2
> という漸化式が成り立つ
> これとa(0)=0より
> a(n)=2^(n+1)-2

問題>>291
> 偏りのない1枚のコインを繰り返しn回投げるとき、表が連続する最大回数の期待値を求めよ。
例(n=3の場合)>>298
> 念のため、n=3 の場合で説明する。 表が連続する最大回数を kとおく。表を○、裏を×で表す。
>
>  k=0のとき、×××となる確率は、1/8
>  k=1のとき、○××、×○×、××○、○×○となる確率は、4/8
>  k=2のとき、○○×、×○○となる確率は、2/8
>  k=3のとき、○○○となる確率は、1/8
>
> したがって、表が連続する最大回数の期待値 E(3) は、
>
>  E(3) = 0・(1/8) + 1・(4/8) + 2・(2/8) + 3・(1/8) = 11/8

314:256=287=291
15/08/28 05:34:33.89 UDTInPuv.net
まだ解かれていないもの
問題>>256
> ルーレットで赤か黒に賭けて勝つ確率は、どちらも9/19。
> 毎回1ドルずつ賭け、元金900ドルを1000ドルに増やしたい。
> 1000ドルになるか、0ドルになるまで続ける。
> p=9/19、x=900、y=1000 とおくとき、1000ドルに達する確率は
> (((1-p)/p)^x-1)/(((1-p)/p)^y-1) で表せることを証明せよ。

315:132人目の素数さん
15/08/28 05:37:28.31 UDTInPuv.net
>>291
念を押すけど、>>291は答えが準備できていません。
>>299
> ちなみに、 >>292 氏が書いてるのは、
> >>291 の問題ではなく、 >>287 の問題のn=2のケースのようだぞ?
なるほど。
てっきり>>292氏が、>>291の問題を勘違いして解いていたのかと思っていました。

316:132人目の素数さん
15/08/28 05:45:42.43 UDTInPuv.net
あたりき しゃりきの こんこんちき

317:132人目の素数さん
15/08/29 14:49:44.64 lXTUasUq.net
>>256,304
xから始めて yに達する確率を P(x)とすると
P(0)=0, P(x) = (1-p)P(x-1) + pP(x+1) (0<x<y), P(y)=1.
これを解けば、 P(x) = (((1-p)/p)^x-1)/(((1-p)/p)^y-1).

318:132人目の素数さん
15/08/29 16:06:35.07 YCiHvtOJ.net
この問題と同等の問題が、過去スレのどっかにあるはず。
出題者が「高校生に解けるはず」とか書いていたが、
ここで言うところのP(1)を結論から持ってきたようで、
P(0)、P(1)と漸化式から一般式を導いていたようだ。
確かに、P(0)、P(1)と漸化式があれば、高校生でも回答可能だ
だが、P(1)の計算方法を具体的に示し、
「このようにP(1)の計算は困難だが、それでも高校生に可能か」
のような質問をしたが、返答が無かったように記憶している。
その時の出題者と同一人物か?

319:132人目の素数さん
15/08/29 17:05:44.69 SyRxSJon.net
どっちの出題者でもないけど、P(1)は P(y)=1 があるからわかる。
P(0)=0, P(x) = (1-p)P(x-1) + pP(x+1) (0<x<y), P(y)=1.
漸化式を変形すると、
P(x+1) - P(x) = ((1-p)/p) {P(x) - P(x-1)} (0<x<y).
数列{P(x+1) - P(x)}は初項 P(1)-P(0)、公比 r := (1-p)/p の等比数列だから、
P(x+1) - P(x) = r^x {P(1) - P(0)} (0<=x<y).
よって、
P(x) = P(0) + Σ[k=0, x-1] {P(k+1) - P(k)} = P(0) + {(1 - r^x)/(1-r)} {P(1) - P(0)}.
P(0)=0 より、P(x) = {(1 - r^x)/(1-r)}P(1).
P(y)=1 より、P(1) = (1-r)/(1 - r^y).
したがって、
P(x) = (1 - r^x)/(1 - r^y) = (((1-p)/p)^x-1)/(((1-p)/p)^y-1).

320:132人目の素数さん
15/08/29 17:18:49.71 GXuWDarj.net
>>309
答えありきで逆算するならそれでもいいけど
真面目にやるなら下式で証明しないとダメでしょ
P(x,t+1) = (1-p)P(x-1,t) + pP(x+1,t) (0<x<y)
まあ、やることは大して変わらないけど

321:132人目の素数さん
15/08/29 17:24:03.87 9tBeoMHo.net
>>308
別人だよ

322:132人目の素数さん
15/08/30 21:55:58.20 lCKX1Y5g.net
pを奇素数とするとき, 任意の相異なる5つの正の整数に対して, そのうち2つを上手く選ぶことで, 選んだ2数の和がpでない奇素数で割り切れるようにできることを示せ.

323:132人目の素数さん
15/08/30 22:32:00.01 /oWHA1w4.net
>>312
なんか微妙な表現で分かりにくくしてあるけど
うまく選ぶことで3で割り切れるようにすることもできるし
5で割り切れるようにすることもできることを示せばいいだけのような

324:132人目の素数さん
15/08/31 12:27:28.60 YiMuchNW.net
>>313
5つとも15で割って1余る整数のとき、どの2つの和も3や5で割り切れない

325:132人目の素数さん
15/08/31 13:09:06.91 yUZ5qTrj.net
>>314
あそうか、なんか問題読み違えてた。
任意の5つの正の整数があれば、
2数の和を割り切る奇素数が少なくとも2つ存在することを言えばいいのかな。

326:132人目の素数さん
15/09/02 17:35:22.12 XNWv0rxl.net
>>312
S={a,b,c,d,e}をa<b<c<d<eなる5つの正整数からなる集合とし、
どの2つを選んでもその和はp以外の奇素数で割り切れないとする。
Sの元に共通因数があれば、それで割った数からなる集合S'も
やはり上の条件を満たす。
よって最初からSの元に共通因数は無いものとする。
このような集合Sが存在しないことを示せばよい。
A,B,C(A<B<C)をSの中から任意に選んだとき、
A+CとB+Cがともに2の冪乗と仮定すると2(A+C)≦B+C<2Cとなり矛盾。
よってA+CとB+Cのうち一方はpの倍数である。
よってa+d,b+d,c+dのうち2つはpの倍数。
同じくa+e,b+e,c+eのうち2つはpの倍数。
よってa+dとa+eがともにpの倍数であるか、
またはb+dとb+eがともにpの倍数であるか、
またはc+dとc+eがともにpの倍数である。
いずれの場合もe-dはpの倍数となる。
ここでd+eがpの倍数でないと仮定するとa+e,b+e,c+eはpの倍数。
よってc-aとc-bはともにpの倍数。
またa+cまたはb+cのうち一方はpの倍数。
よって(c-a)+(a+c)=(c-b)+(b+c)=2cはpの倍数なのでcはpの倍数。
これとc+eがpの倍数であることからeはpの倍数。
続いてa,b,dもpの倍数であることがいえる。
よってSの元に共通因数pがあることになり矛盾。
したがってd+eはpの倍数である。(続く)

327:132人目の素数さん
15/09/02 17:36:14.61 XNWv0rxl.net
d+e,e-dがともにpの倍数であることからd,eはpの倍数。
これとa+d,b+d,c+dのうち2つはpの倍数であることから
a,b,cのうち2つはpの倍数。
これとa+c,b+cのうち一方がpの倍数であることからcはpの倍数。
さらにa,bがともにpの倍数とするとSの元に共通因数pが
あることになり矛盾するので、a,bのうち一方はpの倍数でない。
以下、aがpの倍数でないとする。
bがpの倍数でないとしても同様なのでこの場合は省略。
c,d,eはpの倍数でありaはpの倍数でないから、
a+b,a+c,a+d,a+eはpの倍数でないので2の冪乗である。
よってa+c,a+d,a+eは4の倍数でありe-c,e-dは4の倍数となる。
ここでc+eとd+eのうち一方が4の倍数と仮定すると、
(e-c)+(c+e)=(e-d)+(d+e)=2eは4の倍数となりeは偶数となる。
これとa+eが2の冪乗であることからaは偶数。
続いてb,c,dも偶数であることがいえる。
よってSの元に共通因数2があることになり矛盾。
したがってc+eとd+eはどちらも4の倍数ではない。
e-cとe-dが偶数であることからc+eとd+eはともに偶数である。
よって整数s,t(0<s<t)を用いて
c+e=2p^s
d+e=2p^t
と表せるが、
p(c+e)=2p^(s+1)≦2p^t=d+e<2eとなり矛盾。
したがって、条件を満たすような集合Sは存在しない。
ちなみに4つの場合は1,5,7,11のような例がある。

328:132人目の素数さん
15/09/03 07:36:05.84 bNPipVA3.net
>>312
五つの相異なる正整数a,b,c,d,eに対し、十通りの和 a+b、a+c、a+d、...、d+e全てが、2^m*p^n 型になるような5数の選び方は無いことを証明すればよい。
これが示されれば、五つの相異なる正整数を選べば、必ずその中に、2^m*p^n型で無い二数の和が有ることになり、それは、2、p以外の素因数を持つ。
そのような5数a,b,c,d,eが見つかったとすると、2a,2b,2c,2d,2e、も自動的に条件を満たすので、5数の内少なくとも一つは奇数としてよい。(※)
同様に、pa,pb,pc,pd,pe、も自動的に条件を満たすので、5数の内少なくとも一つはpで割り切れないとしてよい。(※※)
(a+b)+(a+c)+(b+c)=2(a+b+c)なので、(a+b),(a+c),(b+c)の中に奇数は0個か2個ある → a,b,cに奇数は1個か3個ある。
同様の議論を、(a+c),(a+d),(c+d)の間等でも行い、(※)も考慮すると、結局、a,b,c,d,e全てが奇数であるとしてよい。
(a+b)、(a+c)、(b+c)はいずれもpの倍数だとすると、(a+b) + (b+c) = (a+c) + 2b であるから、bもpの倍数でなければならない。
すると、aもc、pの倍数となる。この検討を(a+c),(a+d),(c+d)等へ波及していくと、結局、abcde全てが、pの倍数でなければならなくなり、(※※)に違反する
つまり、(a+b)、(a+c)、(b+c)の中に、2^m型の数がある。(mは明らかに2以上)
仮にそれをa+b=2^sとし、b+c=2^x*p^y,a+c=2^u*p^vとすると、(a+b) + (b+c) = 2^s + 2^x*p^y = (a+c) +2b = 2^u*p^v + 2b
b= 2^(s-1) + 2^(x-1)*p^y - 2^(u-1)*p^v となるが、bは奇数なので、xかuの一方は1、他方は2以上でなければならない。
つまり、(a+b)、(a+c)、(b+c)のように、a,b,c,d,e中から3数を選び、その中の組み合わせで作った三つの和は、
一つは2^m型(以後A型)、一つは2*p^n型(B型)、一つは、2^s*p^t ただしs≧2(C型)と、明確に3種類に分けることができる。
しかし、十通りの和を、矛盾無くこの3種類に分類することはできなく(下参照)、文頭の命題が証明される。

329:132人目の素数さん
15/09/03 07:36:34.50 bNPipVA3.net
4つならば、a=1、b=5、c=7、d=11の時
a+b
a+c b+c
a+d b+d c+d  とすると
06(B型)
08(A型)  12(C型)
12(C型)  16(A型)  18(B型) の様に可能。
2段目までは必然、3段目一番左a+dの位置を仮にA型にすると、b+dの位置はC型になるが、b+c、b+d、c+dの関係が矛盾する
従って3段目一番左a+dの位置はC型になり、残りも確定。このように、型の入れ替えを除いて、可能なパターンはこれだけ
5つならば
a+b
a+c b+c
a+d b+d c+d
a+e b+e c+e d+e
a+bがB型なので、a+eをA型とすると、b+eはC型とせねばならないが、b+cがC型なので、無理
従って、a+eをC型、b+eはA型となるが、b+dがA型なので、やはり矛盾する。

330:132人目の素数さん
15/09/03 12:10:25.76 iq8wMPDx.net
>>318
間違いだらけだな。

331:132人目の素数さん
15/09/03 13:42:51.33 Kz60zSMw.net
>(a+b)+(a+c)+(b+c)=2(a+b+c)なので、(a+b),(a+c),(b+c)の中に奇数は0個か2個ある → a,b,cに奇数は1個か3個ある。
a,b,cについての恒等式からa,b,cの偶奇の組合せが絞られるわけないわな

332:132人目の素数さん
15/09/03 14:14:00.03 nh2qC05S.net
a,b,c,d,e全てが偶数であるケースを除いて考えてよいので、
可能性として残るのは、a,b,c,d,e全てが奇数の時のみ

333:132人目の素数さん
15/09/03 14:19:43.64 77MtUAG6.net
確かにこの段階で、除外するのは早々なので、
誤:(a+b)+(a+c)+(b+c)=2(a+b+c)なので、(a+b),(a+c),(b+c)の中に奇数は0個か2個ある → a,b,cに奇数は1個か3個ある。
正:(a+b)+(a+c)+(b+c)=2(a+b+c)なので、(a+b),(a+c),(b+c)の中に奇数は0個か2個ある → a,b,cに奇数は0個か1個か3個ある。
と訂正しておく

334:132人目の素数さん
15/09/03 15:15:01.98 Kz60zSMw.net
a,b,cについての恒等式から(以下略

335:132人目の素数さん
15/09/03 20:06:53.92 ZTPCiJii.net
あ、なるほど、いろいろ検討している内に、a+b、a+c、...、d+e の十個の和は、全て偶数であることが
当たり前と思っていたので、それを前提に議論を進めていたが、そうで無い場合についても言及せねばならなかった。
a,b,c,d,eの中の奇数の数が0個の時、a+b,a+c,,,,,d+eの10個の和の内、奇数の数は0個
a,b,c,d,eの中の奇数の数が1個の時、同、4個
a,b,c,d,eの中の奇数の数が2個の時、同、6個
a,b,c,d,eの中の奇数の数が3個の時、同、6個
a,b,c,d,eの中の奇数の数が4個の時、同、4個
a,b,c,d,eの中の奇数の数が5個の時、同、0個
となるが、a+b,a+c,,,,,d+eの10個の和全てが偶数なら、a,b,c,d,e全てが偶数か、全てが奇数と結論できる。
前者を除いたので、a,b,c,d,e全てが奇数となり、その後の内容が>>318の通り
ここで、10個の和全てが偶数では無い場合について少し説明を加えると、
10個の和の内、4個が奇数の場合は、a,b,c,d,e全てが、pの倍数か、残り6個の和が全てが2の冪数と要請される。
前者は前提から除かれ、後者も、(b+d)+(c+e)=(b+e)+(c+d)という関係式から、
x<u、x<v、u<y、v<yという条件で、2^x+2^y=2^u+2^vという関係を満たす必要があり、不可能と判る。
6個が奇数の場合は、a,b,c,d,e全てが、pの倍数となり、やはり除かれる。

336:132人目の素数さん
15/09/03 21:20:52.95 eePIZyAA.net
>>285誰か解けた?

337:132人目の素数さん
15/09/04 16:18:20.31 I2InW5r5.net
円周上にランダムに5点を取るとき、それらが半円弧に収まる確率を求めよ。

338:132人目の素数さん
15/09/04 16:22:09.35 +AZVzaso.net
>>312 の一般化
kを正の整数, p_1, p_2,...,p_kを


339:k個の相異なる素数とするとき, 任意の相異なる2^k+1個の正の整数に対して, そのうち2つを上手く選ぶことで, 選んだ2数の和がp_1,p_2,...,p_kのいずれとも異なる素数で割り切れるようにできることを示せ. 



340:132人目の素数さん
15/09/04 16:38:08.52 wfaRDC6Y.net
>>327
1/16

341:132人目の素数さん
15/09/04 17:02:48.59 I2InW5r5.net
>>329
ハズレ。
そもそも答えだけ書く者は、以降荒らしと見做して無視することにする。

342:132人目の素数さん
15/09/04 18:29:41.26 KNPzHhFF.net
ランダムにとった5点はいずれも重ならないの?

343:132人目の素数さん
15/09/04 18:45:19.70 KNPzHhFF.net
そもそも実数をランダムに選択ってのが出来たんだっけ?
よくわからんくなってきた。

344:329
15/09/04 19:05:43.41 wfaRDC6Y.net
>>331
単位円上に点を設定することとし、5点の内x軸との角度が最小な点をAとすると
他の1点がある半円の方に他の3点が存在すればよいから
(1/2)^3=1/8

345:132人目の素数さん
15/09/04 19:56:58.23 wfaRDC6Y.net
訂正
単位円上に点を設定することとし、初めの1点を原点として座標を設定し
次の1点がある半円の方に他の3点が存在すればよいから

346:132人目の素数さん
15/09/04 19:59:51.48 Qh2v0xn2.net
>次の1点がある半円
その半円は一つに定まるのかいな

347:132人目の素数さん
15/09/04 20:22:26.79 RexkMsQ0.net
第1点第2点の成す角をαとして、αは0~πの一様分布。
第3点が第1点に対して成す角を
第2点が正になるように測った偏角をβとすると
βは-π~πの一様分布で、
α-π≦β≦πのとき題意は成立する。
そのうち、0≦β≦αのときは
第3点γがα-π≦γ≦πならよく、
α≦β≦πのときはβ-π≦γ≦πならよい。
これを同様に第5点まで繰り返して、
題意の成立範囲を積分すれば終了。
単純だが面倒な作業なんで、誰かやって。

348:327
15/09/04 20:31:51.84 I2InW5r5.net
紛らわしいので相異なる5点としておきますね。結果はたぶん変わらないかと…。
とりあえず正解は出ていない。
(再掲)
円周上にランダムに相異なる5点を取るとき、それらが半円弧に収まる確率を求めよ。

349:132人目の素数さん
15/09/04 21:14:10.21 wfaRDC6Y.net
>>329
は間違っていた。
>>337
3点目以降の場合分けにより、角度/360の掛け算により計算できると思われる。

350:132人目の素数さん
15/09/04 21:38:47.86 I2InW5r5.net
ちゃんと答案作ってから書いてください。
思いつきで適当なこと書いているのと変わらないから。

351:132人目の素数さん
15/09/05 00:08:11.86 qNbCyIHq.net
やだよ、めんどくさいから。>>336

352:132人目の素数さん
15/09/05 00:11:55.70 YJSRpv0h.net
360などという人工的な数字が出てくるなんてビックリだよ

353:132人目の素数さん
15/09/05 00:20:32.24 FBLHJ4e5.net
まさか、
「ランダムに相異なる5点を取る」
では問題が定義できていないことに気付いてないわけではないよな?
ただの釣りだよな?
それにしても、Wikipediaの「ベルトランの逆説」の項もたいがいだな…
エムシラも暴れてるし

354:132人目の素数さん
15/09/05 00:27:40.58 YJSRpv0h.net
この場合、ベルトランの逆説のような多義性は産まれるのか?
ワイルの一様分布定理の「一様」って何だよ、などと文句言う人がいないのと同程度には明確な文章だと思うけど

355:132人目の素数さん
15/09/05 00:35:25.88 B7UAE1rW.net
>>341
当然、360[°]=2π[rad]

356:132人目の素数さん
15/09/05 01:06:21.18 qNbCyIHq.net
>>343
台が有界だから、一様分布は普通にあるだろ。あと、
五点の分布が独立とすれば、分布は定義できてる。
問題はないよ。

357:132人目の素数さん
15/09/05 01:12:01.76 FBLHJ4e5.net
通し番号を付けた5点がそれぞれ独立に円周上の一様分布で選ばれるものとする。
2点以上が一致する場合は確率としては0になるので無視して構わない。
5点が異なり、なおかつ全てが半円周内に含まれるとき、
その半円周内での反時�


358:v回りの並び順は半円周の取り方によらない。 したがって、どの点がその半円周の中で最初に出現するかで場合分けして確率を求めればよい。 条件を満たし、1番目の点が半円周内で最初に出現する確率は、他の点がその点から始まる半円周内に含まれればよいので、1/16 以下いずれも1/16なので、 条件を満たす確率は5/16 一般に、n個の点なら n/(2^(n-1))



359:132人目の素数さん
15/09/05 01:32:00.22 qNbCyIHq.net
そりゃ、違うだろ。

360:327
15/09/05 01:44:50.07 KPdtalXu.net
>>346
正解です。

361:132人目の素数さん
15/09/05 01:52:53.10 tC0sbvGS.net
>>346
シミュレーションでも、それを支持しているようです。
URLリンク(codepad.org)
URLリンク(codepad.org)

362:132人目の素数さん
15/09/05 02:11:01.03 Z/YUQy9A.net
本日の赤っ恥 ID:qNbCyIHq

363:132人目の素数さん
15/09/05 07:28:47.36 9SCQre6I.net
>>346
n点が1/3円周に含まれる確率はいくつか
n点が2/3円周に含まれる確率はいくつか

364:132人目の素数さん
15/09/05 11:58:09.69 FBLHJ4e5.net
>>351
1/3だと同様の考え方でできますが.
2/3だと(つまり1/2を超えると)問題が複雑化しそうですね

365:132人目の素数さん
15/09/05 13:31:07.44 FBLHJ4e5.net
>>351
5点だと
1/3円周の場合は同様にして5/(3^4)=5/81

2/3円周の場合は、隣り合う点と点の間隔が1/3以上となる箇所が
1箇所のみの場合と2箇所の場合を考える必要がある。(3箇所の場合は確率0なので無視)
5×(2/3)^4 = 80/81 という計算では、2箇所の場合をダブルカウントしているので
それを引く必要がある。
以下、隣り合う点と点の間隔が1/3以上となる箇所が2箇所ある場合について考える。
その2つのインターバルで区切られる点のグループは
「1個と4個」の場合と「2個と3個」の場合がある。
1個と4個の場合、単独の1個をA、4個の先頭をBとして、AとBの選び方が5P2 = 20通り
以下、1周を1として、AB間の距離をrとすると、1/3≦r<2/3
ABを固定して考えると、残りの3点はBに続く長さ(2/3)-rの範囲に存在すればよいので
1個と4個の場合の確率をまとめると
20×∫[1/3~2/3]((2/3)-r)^3 dr = 5/81
2個と3個の場合、2個を順にA,B、3個の先頭をCとして、ABCの選び方が5P2 = 60通り
AB間の距離をx、BC間の距離をyとすると、0<x<1/3、1/3≦y<(2/3)-x
残り2点の存在範囲は(2/3)-x-y以内となり、確率は
60×∫[0~1/3]∫[1/3~(2/3)-x]((2/3)-x-y)^2 dydx = 5/81
よって、求める確率は
80/81 - (5/81 + 5/81) = 70/81
…とここまで書いて、あることに気付いたので続く

366:132人目の素数さん
15/09/05 14:09:39.00 FBLHJ4e5.net
>>351 >>353
n点が2/3円周に含まれる場合
n×(2/3)^(n-1)では、隣り合う2点の間隔が1/3以上となるのが2箇所ある場合を
ダブルカウントしている
隣り合う2点の間隔が1/3以上となるのが2箇所ある配置を1つ考える。
その2箇所で分断される2つのブロックの先頭をA,Bとすると、
Aから始まるブロックまたはBから始まるブロックを前に1/3だけ詰めることで、
n点が1/3円周に含まれる配置を計2つ作ることができる。
また、そのような操作で同じ「n点が1/3円周に含まれるパターン」となるような元の配置は
n-1個存在する。
したがって、隣り合う2点の間隔が1/3以上となるのが2箇所ある配置となる確率をp、
n点が1/3円周に含まれる確率をqとすると、
2p=(n-1)qとなり、p=(n-1)q/2
q=n×(1/3)^(n-1)より、p=(n(n-1)/2)×(1/3)^(n-1)=(nC2)×(1/3)^(n-1)
よって、n点が2/3円周に含まれる確率は
n×(2/3)^(n-1) - (nC2)×(1/3)^(n-1) = n(2^n-n+1)/(2・3^(n-1))

ちなみに、p=(nC2)×(1/3)^(n-1)となるところはもっと簡単に説明できそうだ。
1/2円周~2/3円周の間なら同様の考え方。

367:132人目の素数さん
15/09/06 16:18:23.20 C64RsHHe.net
一般化した。
m,nを自然数とし、(m-1)/m < r ≦ m/(m+1) とする。
通し番号をつけたn個の点を、円周上からそれぞれ独立に一様分布に従いランダムに選ぶとき、
n点が、円周全体のr倍の長さの範囲に全て含まれる確率をPとすると、
P = Σ[k=1~m]Σ[j=1~k](-1)^(k-j)・(nCk)・(kCj)・(1-k(1-r))^(n-1)
となることを示せ。
ただし、二項係数aCbは、0≦a<bのとき0となるものとする。
(この注釈を認めない場合は、n≧mという制約が必要となる)

368: ◆z2JTMx230M
15/09/07 11:23:30.81 gh2mDV64.net
半径1の半球を底円と並行な平面で体積が半分になるように切断した
このとき、断面積は{(ア)cos(イウ°)-(エ)}π
アイウエに当てはまる数字はなにか?
答えはトリップ
#アイウエ
の形で

369: ◆z2JTMx230M
15/09/07 12:04:12.25 8ic4L5sE.net
どうだ。

370:132人目の素数さん
15/09/07 12:07:16.62 8ic4L5sE.net
ちょっと面白かった。カルダノさんのおかげ

371:132人目の素数さん
15/09/08 08:42:20.02 mvj/sh7U.net
警察による税金を使ったいやがらせ犯罪、集団ストーカー。犯行内容
盗聴、盗撮、尾行、待ち伏せ、家宅侵入、窃盗、器物破損、風評のばらまき、就職妨害、リストラ工作、
暴走族や暴走大型車両による騒音攻撃の繰り返し、住居周辺での事件のでっちあげ、音声送信の強要、
電磁波による触覚攻撃、思考盗聴、無言電話、無実の人間を犯人にでっち上げ、ヘリによる威嚇、殺人、
メディアを使ってのほのめかし、パソコン遠隔操作で対象者のパソコン内部データをいじくる。
こういった犯罪組織に人を逮捕する権限をあたえているという、今の日本は恐ろしい国になっている。

372:132人目の素数さん
15/09/08 09:23:37.41 aX2AWZyo.net
妄想はともかく、マイナンバーは酷いことになりそうだな。

373:132人目の素数さん
15/09/08 13:36:28.23 zb04xocN.net
ヘリによる威嚇というのは間違いなく存在し、私が就職活動で東京に高速バスで行ったときに
蛯名パーキングエリアでバスから降りると、頭上に自衛隊のヘリが高度100m程度で
ホバーリングしていた。
上下関係ということでも示したかったのだろうか。小学生程度の頭の持ち主の行動だと考えられる。
そのことを盗聴されている部屋で「独り言」で言ったら、すぐに某テレビ局で蛯名パーキングエリアが
取り上げられていた。

374:132人目の素数さん
15/09/09 01:18:11.86 mShGGGhv.net
>>328
二つの素数、例えば、2,3なら、1,5,7,11の四つの数を取れるが、五つは無理(証明済み)
三つの素数、2,3,5なら、1,3,7,17,47や、1,5,31,49,59等5つの数を取れるが、おそらく6つは無理(2000以下でチェック済み。以下同様)
四つの素数、2,3,5,7なら、1,2,3,5,7,13や、1,2,3,7,13,47等6つの数を取れるが、おそらく7つは無理
五つの素数、2,3,5,7,11なら、1,2,5,9,13,19,23,31や1,3,5,6,9,15,27,39等8つの数を取れるが、おそらく9つは無理
六つの素数、2,3,5,7,11,13なら、1,2,3,5,7,9,13,19,23,47や1,3,5,7,9,13,17,19,23,47等10の数を取れるが、おそらく11は無理
つまり、
k=3では、おそらく6つで無理なのに、9個では無理であることを
k=4では、おそらく7つで無理なのに、17個では無理であることを
k=5では、おそらく9つで無理なのに、33個では無理であることを
k=6では、おそらく11で無理なのに、65個では無理であることを証明せよという一般化になっている
保険を掛けすぎ。
(最初に指摘しておくべきだが、問題文にも問題があると


375:思われる)



376:132人目の素数さん
15/09/09 02:07:36.57 8SrfUZPd.net
>>362
328ではないが
その「保険をかけている」ものについてすら一般化した証明を示してないのに
何言ってんの?
それって、たとえば
「双子素数どころか、三つ子素数だろうが4つ子素数だろうが
可能な素数の並びはどれも無限に存在するっぽいのに、
双子素数だけ取り上げて無限にあるという命題立てるなんて保険かけすぎ」
とか言ってるのと同じ。
証明ってなあに?
>>328は自分の証明できたものを問題として提示しているだけでしょうに

377:132人目の素数さん
15/09/09 02:56:08.65 m3YLRiSK.net
(1) cos1°は無理数であることを証明せよ
(2)cos1°は超越数か?そうでなければ最低何次の有理数係数の方程式で表せるか

378:132人目の素数さん
15/09/09 03:47:16.16 hpZpH5c5.net
>>364
cosの30倍角公式と60倍角公式が
整係数多項式であることから、
cos1゜が代数的無理数であることが判る。
次数は、どしたらよかろ?

379:132人目の素数さん
15/09/09 07:17:59.99 8SrfUZPd.net
>>365
自然数nについて、T_n(cosθ)=cos(nθ)を満たすような多項式T_n(x)
(n次のチェビシェフの多項式)について
T_n(x)=0の解は、x=cos((2k-1)π/(2n)) (k=1,2,…,n)
であることを踏まえると、
T_90(x)=0の解がcos1°,cos3°,cos5°,…,cos179°
T_30(x)=0の解がcos3°,cos9°,cos15°,…,cos177°
T_18(x)=0の解がcos5°,cos15°,cos25°,…,cos175°
T_6(x)=0の解がcos15°,cos45°,cos75°,…,cos165°
となるので、
T_90(x)*T_6(x)/(T_30(x)*T_18(x))なる48次の有理数係数の多項式が存在し、
~=0の解はcosN°(Nは180以下で180と互いに素なφ(180)=48個の各自然数)
解の1つがcos1°となっているので、48が最低次数の上界であることは確か。

380:132人目の素数さん
15/09/09 08:14:04.63 hpZpH5c5.net
48次の多項式がある
って話でしょ。
最低次数はどうしよう?

381:132人目の素数さん
15/09/09 10:03:56.77 iAt2BKmH.net
>>366
48は正解です
厳密な証明は有理数体にcos1°を添加して拡大次数を見る
あとは1の原始360乗根使ってφ(360)/2を計算するだけ

382:132人目の素数さん
15/09/09 10:27:59.54 iAt2BKmH.net
もう少し具体的に言うと
1の原始n乗根をζ_nとすると
オイラーの公式から
cos1°=cos(2π/360)=(ζ_360+ζ_360^-1)/2
よりQ(ζ_360)⊃Q(cos1°)
またcos1°は実数でζ_360は虚数を含むため[Q(ζ_360):Q(cos1°)]≧2
さらにオイラーの公式からQ(cos1°)上ζ_360を根に持つ二次方程式を実際に作れているので[Q(ζ_360):Q(cos1°)]=2が確定
拡大次数が乗法的なことから
[Q(ζ_360):Q]=[Q(ζ_360):Q(cos1°)][Q(cos1°):Q]
⇔[Q(cos1°):Q]=[Q(ζ_360):Q]/[Q(ζ_360):Q(cos1°)]=φ(360)/2=φ(2^3 3^2 5)/2=2^2(2-1)3(3-1)(5-1)/2=48
したがって最低次数は48であることが分かる

383:132人目の素数さん
15/09/09 12:58:38.19 8SrfUZPd.net
>>369
自分の知識では>>366の予想が限界だったことはよくわかった
>1の原始n乗根をζ_nとすると
正確に言うと「ζ_n=e^(2πi/n)とすると」かな
まあわかるけど。

384:132人目の素数さん
15/09/09 13:26:04.64 Gaa20TDn.net
>>364
この問題か。最小多項式の次数を除いては、
もうとっくの昔に思い付いて解いちゃっているよ。
半倍角公式からsin^2(1°)=(1-cos(2°))/2で、
cos(2°)も代数的無理数だから、sin(1°)の方も代数的無理数な。

385:132人目の素数さん
15/09/09 13:30:31.47 iAt2BKmH.net
>>370
高校生の知識でも実際に48次方程式作って判定法使って既約ってことを気合いで示す方法もあるにはあるよ
あまりにも無謀すぎるやり方だけど
>>371
いちおう次数がメインの問題として作ったつもり(1)はおまけ問題程度だと思って

386:132人目の素数さん
15/09/09 15:12:57.74 8SrfUZPd.net
>>372
その48次方程式が既約であることが示せても、
それ以外にcos1°を解として持つもっと次数の低い方程式が存在しないことを示すのは
高校生の知識では無理かと。

387:132人目の素数さん
15/09/09 15:27:49.15 Ar2FfDWa.net
>>373
いやそれを根に持つ多項式が既約ならその多項式の次数が最低次数ってことは言えるよ
最小多項式(最高次の係数が1で既約なもの)の一意性から言える
一意性の証明は高校生レベルでも出来るには出来るよ
多項式の剰余を使う

388:132人目の素数さん
15/09/09 15:35:26.17 7pNKW7ME.net
高校レベルだと既約性を示す方が難しいんじゃないか

389:132人目の素数さん
15/09/09 15:37:01.63 Ar2FfDWa.net
>>375
それも確かに問題だね
アイゼンシュタイン判定法は数学オリンピックでも使うくらいだからいちおう高校生レベルと言えるのかな?

390:132人目の素数さん
15/09/10 08:13:40.43 q7HF0xVJ.net
a(1)=1,a(n+1)=a(n)/2+1/a(n)のとき、
a(n)を求めよ
Wolframとか使わずに初見で解いたらバケモノ

391:132人目の素数さん
15/09/10 09:25:33.48 FE0uoLCP.net
1次分数式だから高校数学レベル

392:132人目の素数さん
15/09/10 09:26:09.96 FE0uoLCP.net
低レベル掲示板だったか
これはすまぬ

393:132人目の素数さん
15/09/10 10:24:22.44 q7HF0xVJ.net
>>378
通分して分子二次式になるから普通の分数型と違うぞ
解けるなら解いてみろよ

394:132人目の素数さん
15/09/10 10:26:56.48 fwhHKoME.net
>>378
1次分数式の定義は?

395:132人目の素数さん
15/09/10 11:23:27.03 fwhHKoME.net
>>377
a(n+1) = (a(n)^2+2)/(2a(n))
a(n+1)+√2 = (a(n)+√2)^2/(2a(n))
1/(a(n+1)+√2) = 2/(a(n)+√2)-2√2/(a(n)+√2)^2
b(n) = √2/(a(n)+√2)とおくと
b(n+1) = 2b(n)-2b(n)^2
1-2b(n+1) = (1-b(n))^2
c(n) = 1-2b(n)とおくと
c(n+1) = c(n)^2
c(1) = 2√2-3
c(n) = (2√2-3)^(2^(n-1))
a(n) = √2(2/(1-c(n))-1)
= √2(2/(1-(2√2-3)^(2^(n-1)))-1)
なんか、等価でもっときれいな形式もありそうではあるが。
a(n) = √2(1+c(n))/(1-c(n))のほうがまだまし?

396:132人目の素数さん
15/09/10 11:43:27.03 1+1gfes7.net
>>377
a(n)=√2b(n)/c(n), b(1)=1 c(1)=√2 とおいて元の式に代入すると
√2b(n+1)/c(n+1) = b(n)/√2c(n) + c(n)/√2b(n) = √2{b(n)^2+c(n)^2}/2b(n)c(n)
分母分子比較して、 b(n+1)=b(n)^2+c(n)^2, c(n+1)=2b(n)c(n)
b(n+1)+c(n+1)=(b(n)+c(n))^2, b(n+1)-c(n+1)=(b(n)-c(n))^2
よって、 b(n)+c(n)=(1+√2)^(2^(n-1)), b(n)-c(n)=(1-√2)^(2^(n-1))
a(n)=√2・{(1+√2)^(2^(n-1))+(1-√2)^(2^(n-1)}/{(1+√2)^(2^(n-1))-(1-√2)^(2^(n-1)}
整理すると、a(1)=1, n≧2のとき a(n)=√2・{(1+√2)^(2^n)+1}/{(1+√2)^(2^n)-1}

397:132人目の素数さん
15/09/10 13:55:41.73 UqiYOrwz.net
>>383
> 分母分子比較して、 b(n+1)=b(n)^2+c(n)^2, c(n+1)=2b(n)c(n)
なんだよ、このトンデモ数学は! ああ?

398:132人目の素数さん
15/09/10 14:05:04.55 fg01Fu9/.net
その等式を満たすb(n)とc(n)を何でもいいから見つければいい、という意味だろう
文脈を読め

399:132人目の素数さん
15/09/10 14:07:55.34 fUpTwTtH.net
>>377
問題の条件「a(n+1)=a(n)/2+1/a(n)」の右辺が普通の解釈になるように「a(n+1)=(a(n)/2)+(1/a(n))」を指すのか、
それとも右辺が連分数のような形で表される「a(n+1)=a(n)/(2+1/a(n))」を指すのか、任意に2通りの解釈が出来るため、
条件を満たす解a(n)の一意性が保証されず、非適切な問題になって、国語辞書に書いてある多くの人が用いる意味での問題
になっていないと思われる (紙ではなく同じ大きさの1行の中に書くため、初期条件「a(1)=1」から、
「a(n+1)=a(n)/2+1/a(n)」という書き方では、大きい「+」が小さい「+」になっていて、容易にこのような解釈が出来るとは思う)。

400:132人目の素数さん
15/09/10 14:10:29.20 fg01Fu9/.net
一方を普通の解釈と認めておきながら、直後に�


401:�立の立場をとるのかw



402:132人目の素数さん
15/09/10 14:12:15.99 fUpTwTtH.net
>>377
(>>386の続き)
非適切性の証明]:nはn≧1なる自然数変数なることを仮定してよい。そこで、nはn≧1なる自然数変数と仮定する。
2つの与えられた条件を両方共に満たす解a(n)が存在しないときは与えられた問題は確かに非適切である。
そこで、2つの与えられた条件を両方共に満たす解a(n)が存在するとする。そして、
2つの与えられた条件を両方共に満たす解a(n)が一意に存在したとする。初期条件a(1)=1から
a(n+1)=(a(n)/2)+(1/a(n)) と解釈すると、任意のn≧1なる自然数nに対してa(n)≧1
であり、解(n)により1つの実数列{a(n)}が構成される。同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
ここで、再度解の一意性が保証された解a(n)は、任意のn≧1なる自然数nに対して
a(n+1)=(a(n)/2)+(1/a(n))、a(n+1)=a(n)/(2+1/a(n)) を両方共に満たすことに注意する。
n≧1なる自然数nを任意に取る。実数列{a(n)}の第n項a(n)を=kとおけば、a(n+1)=(k/2)+(1/k)、
a(n+1)=k/(2+1/k) が両方共に成り立つから、(k/2)+(1/k)=k/(2+1/k) から k^2+2=(2k^2)/(2+1/k)
であり、(k^2+2)(2+1/k)=2k^2 だから、(k^2+2)(2k+1)=2k^2 。従って、kを元に戻すと、
((a(n))^2+2)(2・a(n)+1)=2(a(n))^2 。n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせれば、
実数列{a(n)}について、任意のn≧1なる自然数nに対して第n項a(n)は ((a(n))^2+2)(2・a(n)+1)=2(a(n))^2 を満たす。
よって、n=1とすると、((a(1))^2+2)(2・a(1)+1)=2(a(1))^2 であり、初期条件a(1)=1から、(1^2+2)(2・1+1)=2・1^2
だから、両辺をそれぞれ計算すると、9=2を得る。しかし、9=2は9≠2に反し矛盾する。

403:132人目の素数さん
15/09/10 14:20:24.52 fUpTwTtH.net
>>377
いや、>>388
>同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
>任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
>よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
>任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
の部分は
>同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
>任意のn≧1なる自然数nに対して「a(n)≧0」であり、解(n)により1つの実数列{a(n)}が構成される。
>よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
>任意のn≧1なる自然数nに対して「a(n)≧0」であり、解(n)により1つの実数列{a(n)}が構成される。
ですな。「a(n)≧1」の部分は「a(n)≧0」訂正。

404:132人目の素数さん
15/09/10 14:35:56.00 fUpTwTtH.net
>>387
普通は普通の他の何物でもない。普通の解釈とは、
多くの人が認めそれに従うと思われる基準に則った解釈だよ。
沢山の人は「a(n+1)=a(n)/2+1/a(n)」を見たら、
連分数の形で表された「a(n+1)=a(n)/(2+1/a(n))」では
なく「a(n+1)=(a(n)/2)+(1/a(n))」と解釈するだろうよ。

405:132人目の素数さん
15/09/10 15:04:56.68 fUpTwTtH.net
>>377
ちなみに、すぐ分かるとは思うのだが、論理の飛躍があるから、>>388
>初期条件a(1)=1から
>a(n+1)=(a(n)/2)+(1/a(n)) と解釈すると、任意のn≧1なる自然数nに対してa(n)≧1
>であり、
の部分は
>初期条件a(1)=1から a(n+1)=(a(n)/2)+(1/a(n)) と解釈すると、任意のn≧1なる
>自然数nに対してa(n)>0 。ここで、n≧2なる自然数nを任意に取ると、a(n)>0だから、
>相加・相乗平均の関係により、a(n+1)=(a(n)/2)+(1/a(n))≧2√(1/2)=√2 。
>n≧2なる自然数nは任意だから、nを条件n≧2の下で走らせると、任意のn≧2なる
>自然数nに対してa(n)≧√2 。よって、a(1)=1<√2 から、任意のn≧1なる自然数nに対して
>a(n)≧1 であり、
のような感じに訂正。さすがに任意のn≧1なる自然数nに対してa(n)>0なることは、
直観的にも明らかで、nに関する帰納法からすぐ分かるとは思う。

406:132人目の素数さん
15/09/10 15:16:34.87 fUpTwTtH.net
>>377
幾度も悪いが、>>389は取り消しで、>>388
>同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
>任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
>よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
>任意のn≧1なる自然数nに対してa(n)≧1であり、解(n)により1つの実数列{a(n)}が構成される。
の部分は
>同様に、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、
>任意のn≧1なる自然数nに対して「a(n)>0」であり、解(n)により1つの実数列{a(n)}が構成される。
>よって、与えられた条件を満たすような、解の一意性が保証された解a(n)について、
>任意のn≧1なる自然数nに対して「a(n)>0」であり、解(n)により1つの実数列{a(n)}が構成される。
でした。「a(n)≧1」の部分を「a(n)>0」に訂正すべきだったにもかかわらず、「a(n)≧0」と書いてしまいました。
こういう風に解釈しても、任意のn≧1なる自然数nに対してa(n)>0なることは、
直観的にも明らかで、nに関する帰納法からすぐ分かるとは思う。

407:132人目の素数さん
15/09/10 16:06:11.07 fUpTwTtH.net
>>377
>>388
>n≧1なる自然数nを任意に取る。実数列{a(n)}の第n項a(n)を=kとおけば、a(n+1)=(k/2)+(1/k)、
>a(n+1)=k/(2+1/k) が両方共に成り立つから、(k/2)+(1/k)=k/(2+1/k) から k^2+2=(2k^2)/(2+1/k)
>であり、(k^2+2)(2+1/k)=2k^2 だから、(k^2+2)(2k+1)=2k^2 。従って、kを元に戻すと、
>((a(n))^2+2)(2・a(n)+1)=2(a(n))^2 。n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせれば、
>実数列{a(n)}について、任意のn≧1なる自然数nに対して第n項a(n)は ((a(n))^2+2)(2・a(n)+1)=2(a(n))^2 を満たす。
>よって、n=1とすると、((a(1))^2+2)(2・a(1)+1)=2(a(1))^2 であり、初期条件a(1)=1から、(1^2+2)(2・1+1)=2・1^2
>だから、両辺をそれぞれ計算すると、9=2を得る。しかし、9=2は9≠2に反し矛盾する。
の部分は
>n≧1なる自然数nを任意に取る。実数列{a(n)}の第n項a(n)を=kとおけば、a(n+1)=(k/2)+(1/k)、
>a(n+1)=k/(2+1/k) が両方共に成り立つから、(k/2)+(1/k)=k/(2+1/k) から k^2+2=(2k^2)/(2+1/k)
>であり、(k^2+2)(2+1/k)=2k^2 だから、(k^2+2)(2k+1)=2k^3 。従って、kを元に戻すと、
>((a(n))^2+2)(2・a(n)+1)=2(a(n))^3 。n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせれば、
>実数列{a(n)}について、任意のn≧1なる自然数nに対して第n項a(n)は ((a(n))^2+2)(2・a(n)+1)=2(a(n))^3 を満たす。
>よって、n=1とすると、((a(1))^2+2)(2・a(1)+1)=2(a(1))^3 であり、初期条件a(1)=1から、(1^2+2)(2・1+1)=2・1^3
>だから、両辺をそれぞれ計算すると、9=2を得る。しかし、9=2は9≠2に反し矛盾する。
と訂正ですな。

408:132人目の素数さん
15/09/10 16:20:37.27 UqiYOrwz.net
(1) Σ[k=1 to 4^m] (1/k)^{1/m}、mは2以上の自然数
(2) m(4^{m-1}-1)/(m-1) + 5/8
(1)と(2)の整数部分は等しいことを示せ。

409:132人目の素数さん
15/09/10 21:48:53.01 fwhHKoME.net
なんか変な荒れ方してるが、まあどうでもいい
>>383
b(n)とc(n)の決め方が、3次方程式を解くカルダノの方法のuとvの探し方みたいですな。
2√2-3 = (1+√2)^(-2)だから、>>382は汚いけど答えは一致したってことで。

410:132人目の素数さん
15/09/10 22:19:31.06 fwhHKoME.net
あ、違う。(1+√2)^(-2) = 3-2√2だな。あれ?
ああそうか、だから>>383ではa(1)をまとめられなかったのか。

411:132人目の素数さん
15/09/10 22:24:24.58 Fdi5OLRB


412:.net



413:132人目の素数さん
15/09/10 22:27:42.42 Fdi5OLRB.net
あ、ミスった
>> a_{n}=√2(X^Y+1)/(X^Y-1),X=-3-2√2,Y=2^(n-1)
>> あるいは、虚数単位Iを使い
>> a_{n}=√2(X^Y+1)/(X^Y-1),X=I(1+√2),Y=2^n
に訂正

414:132人目の素数さん
15/09/11 02:26:59.14 StCc9XNv.net
tan1°+√2は無理数であることを証明せよ

415:132人目の素数さん
15/09/11 07:37:43.35 jICTOxiG.net
>>395-398
nはn≧1なる自然数変数なることを仮定してよい。そこで、nはn≧1なる自然数変数と仮定する。
a(1)=1、a(n+1)=a(n)/(2+1/a(n)) と解釈すると、任意のn≧1なる自然数nに対してa(n)>0 。
n≧1なる自然数nを任意に取る。すると、a(n)>0 であり、a(n+1)=a(n)/(2+1/a(n))>0 だから、
1/(a(n+1))=(2+1/a(n))/(a(n))=(2/a(n))+(1/a(n))^2 。よって、各i=n, n+1 に対して b(i)=1/a(i) とおけば、
b(n)=1/a(n)、b(n+1)=1/a(n+1) が両方共に成り立ち、b(n+1)=2・b(n)+(b(n))^2 つまり b(n+1)=(b(n))^2+2・b(n) 。
n≧1なる自然数nは任意だから、nを条件n≧1の下で走らせると、与えられた問題は b(1)=1、b(n+1)=(b(n))^2+2・b(n)
を満たし、任意のn≧1なる自然数nに対して b(n)=1/a(n) と変換して定義される実数列{b(n)}を求める問題に帰着される。
そこで、b(1)=1、b(n+1)=(b(n))^2+2・b(n) のときの解b(n)を求めることを考える。…… 。
仮に a(1)=1、a(n+1)=a(n)/(2+1/a(n)) だったと解釈すると、非線形の漸化式 b(1)=1、b(n+1)=(b(n))^2+2・b(n)
の解b(n)を求める問題に帰着されるんだが、ここから先分かる? >>377のいう
>Wolframとか使わずに初見で解いたらバケモノ
って、多分こっちの話だぞ。連分数の形で書かれた式 a(1)=1、a(n+1)=a(n)/(2+1/a(n))
で書いたと解釈すると、線型の漸化式ではなく、非線形の漸化式を解く問題になる。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch