15/05/10 16:45:43.25 cg233oGG.net
>>386 補足
繰り返しになるが
小平いうところの”定理が述べる数学的現象のメカニズム”>>323を自分なりに解すれば
f(α) = α + δ, δ ≠ 0の無理数があれば、任意の有理数の円centre (x,y), radius r where x,y,r ∈ Q, r > 0, x ≠ y内に、Cauchy's functional equationを満たす無理数を構成できると
だから、"R^2で稠密"(dense in R^2)
分かり易いね・・、分かってしまえばだが(^^
(余談だが、δは一つじゃないんだよね。だから、δの個数分だけそういう点がある・・? いやはや)