15/05/09 17:57:33.16 rm0w8Qw4.net
>>380
下記「(1)をみたす連続でない関数が任意の開区間(a,b)で非有界でなければいけないことを示す。」というのがあった
URLリンク(note.chiebukuro.yahoo.co.jp)
コーシーの関数方程式f(x+y)=f(x)+f(y) neko_dora_nukoさん(最終更新日時:2014/5/23)投稿日:2013/6/16
Qを有理数全体の集合、Rを実数全体の集合とする。
f:R→R
f(x+y)=f(x)+f(y)....(1)
(1)をみたす関数f(x)はQ上で
f(x)=f(1)x....(2)
となる。さらに、f(x)が連続関数であれば、R上で(2)が成り立つ。
Zornの補題を使うと、(1)を満たす連続でない関数が存在することが分かる。
URLリンク(detail.chiebukuro.yahoo.co.jp)
このノートでは、(1)をみたす連続でない関数が任意の開区間(a,b)で非有界でなければいけないことを示す。
(証明)
f(x)は(1)をみたす関数とする。ある開区間(a,b)上でf(x)が有界であると仮定する。
g(x)=f(x)-f(1)x
とおくと、g(x)は(1)をみたし、(2)より任意の有理数rにたいし、
g(r)=0....(3)
となる。さらに、g(x)は(a,b)上で有界である。任意のx∈Rにたいし、適当なr∈Qをとることによって、x+r∈(a,b)とすることができる。
(1), (3)より、g(x)=g(x+r)+g(-r)=g(x+r)となるので、g(x)はR上で有界であることが分かる。
あるc∈Rにたいし、g(c)≠0であったとする。g(x)は(1)をみたすので、任意の自然数nにたいし、
g(nc)=ng(c)
となり、g(x)が非有界であることが導かれ、矛盾がでてくる。従って、任意の実数xにたいし、
g(x)=0
となる。よって、f(x)は、R上で(2)が成り立つので、連続である。
したがって、f(x)が連続でなければ、任意の開区間(a,b)上でf(x)は非有界でなければいけない。■
より一般的な事実を知りました。
f(x)が(1)の連続でない解のとき、G={(x,f(x))|x∈R}はR^2で稠密である。