15/05/06 09:32:20.99 iWZualfN.net
>>326
じゃあ、書こうか。>>16を踏襲した上での話でいいよな。
環同型写像f:R→Rを一価の実関数として扱う。任意のx∈Qに対してf(x)=xである。
xを有理数変数とする。点a∈Qを任意に取る。ε>0を任意に取る。
すると、有理数の稠密性から、0<b<εなる有理数bが存在する。
xは有理数変数であることに着目して、|x-a|<bなる有理直線Q上の点xを任意に取る。
すると、f(x)=x、f(a)=a、b<εの何れもが同時に成り立つから、|f(x)-f(a)|<εを得る。
有理直線Q上の点xは条件|x-a|<bの下で任意だから、
点xを有理直線Q上において条件|x-a|<bの下で走らせて考えると、
εに対して定まる実数δ(ε)>0をδ(ε)=bとすれば、|x-a|<δ(ε)のとき|f(x)-f(a)|<εとなる。
ε>0は任意だから、fは点a∈Qで連続である。点a∈Qは任意だから、f:R→Rは有理直線Q上で連続である。
つまり、f:R→RはQにおいて連続である。以後xは有理数変数ではないとする。ここに、fは環同型写像だから、
任意のx、y∈Rに対してf(x+y)=f(x)+f(y)であり、f(0)=0なることに注意する。