15/05/05 12:45:21.35 8svvg2D/.net
>>299 つづき
ちょっと訳すと
for example, there are automorphisms of C which interchange π and e, send 3^(1/4) to i3^(1/4), and leave √7 fixed.
↓
例、次のような自己同型たちが存在する、π and e の交換と、 3^(1/4) を i3^(1/4)へ移し、√7 は固定する。
当然、Qは固定で、Rは>>259のTHEOREM 4. にあるように、
”Thus the set {φ(rb+q) | r,q∈Q} is a dense subset of the plane.
This set is contained in φ(R); hence φ(R) is also a dense subset of C.”で
wild automorphisms になるのだが・・
超越数:π and e の交換
複素数:3^(1/4) を i3^(1/4)へ移し
の二つの要素が必須なのかね?
”unless α is transcendental over F and there are no complex numbers transcendental over F'.”で
”Thus the set {φ(rb+q) | r,q∈Q} is a dense subset of the plane.
This set is contained in φ(R); hence φ(R) is also a dense subset of C.”THEOREM 4.>>259 ( b∈R such that φ(b) not∈R )
だから、”b∈R such that φ(b) not∈R”は必須で、”複素数:3^(1/4) を i3^(1/4)へ移し”がこれに相当する・・
だが、超越数:π and e の交換は必須ではない・・