15/05/01 15:28:45.88 NPJj25Yb.net
>>260
(>>269の続き)
[第3段]:実関数f(x)=xがワイルドな自己同型写像でないことを示す。
実関数f(x)=xについて、fは恒等関数I_Rに等しく、任意のx∈Rに対してx=x±i・0だから、
fの複素共役はf自身になって、fはワイルドな自己同型ではない。
[第4段];Rのワイルドな自己同型写像は存在しないことを示す。
任意のx∈Qに対してf(x)=xなる環同型写像f:R→Rは一意にf(x)=xと定まる
から、Rのワイルドな自己同型写像は存在しない。