現代数学の系譜11 ガロア理論を読む13at MATH
現代数学の系譜11 ガロア理論を読む13
- 暇つぶし2ch204:恒等写像ではないのでφ(s) ≠ s となるs ∈ Rが存在する. φ(s) > s ならφ(-s) = -φ(s) < -s なので,必要なら-s をとることによってφ(s) < sとできる. 有理数体Q は実数体R の中で稠密である.ゆえに φ(s) < a < sとなる有理数a が存在する. 2.同型φは、有理数を動かさないこと、また、線形性>>169(即ち環同型写像(>>16)の性質)は、既知とする 3.同型φは、任意の正の数x∈Rに対し、符合を変えない。即ち0<x→0<φ(x) ※ ∵√x=y で、x=y^2→φ(x)=φ(y)・φ(y)>0 ※(※の部分で、別の実数の性質、例えば>>188の収束する有理点列{An}を使う手もある) 4.φ(s) < a < sで、各辺に-aを加えて、φ(s)-a < 0 < s-a となる 5.φ(s-a) =φ(s)-a に注意すると、4の後半の不等式は3に反する。(φが(s-a) の符合を変えている!) 6.従って、同型φは恒等写像で無ければならない。 (証明おわり)
次ページ続きを表示1を表示最新レス表示レスジャンプ類似スレ一覧スレッドの検索話題のニュースおまかせリストオプションしおりを挟むスレッドに書込スレッドの一覧暇つぶし2ch