15/04/25 04:30:11.86 1rI4QMvS.net
(続き)
ベストアンサー以外の回答 drtetsuyaandoさん 2007/11/12
たぶん「代数学」か何かのレポート問題だと思いますが, mable_saga さんのヒントで, 解答への95%くらいまで教えてもらっているので, 後の5%は自分で考えましょう。でも, 特別に, あと3%くらいヒントを追加すると,
(1) mable_saga さんの①の方法で, f(1)=1 を証明する。
(2) 数学的帰納法で, 自然数 n に対して f(n) = n を証明する。
(3) n が負の整数や 0 でも f(n) = n であることを証明する。
(4) 有理数 p/q (p は整数, q は自然数) に対し, f(p/q) = p/q であることを証明する。
(5) mable_saga さんの②, ③の方法で, f は単調増加であることを証明する。
(6) あとは, (5)から f が連続であることを証明してもよいし, 直接(4)と(5)を用いて背理法で f が恒等写像でないと矛盾することを示してもよい。
ところで, 複素数体 C の自己同型写像は, 恒等写像と複素共役以外にも, 無数に自己同型写像が存在するところが面白いですね。
ただし, こちらの証明は, 有理数体 Q 上の C の無限超越基底の存在を Zorn の補題を使って証明しないといけないので, もう少し難しくなります。
(引用終わり)