15/02/21 10:30:29.94 aXJKnG6X.net
>>87 補足
> 三つ目は、君ならどうか? 君が1830年頃に生きていたとする。どうやって、正規部分群の定義(gH=Hg)を見つけ、ガロア理論を構築するのか?
当時ガロアが知っていたこと、原論文に引用されていること
コーシー、ガウス、アーベル(なお、ヤコビは手紙に出てくる(楕円関数に関してだろうが))
ラグランジュは? 倉田(下記)はP206で、知っていた or 知らなかったか影響は軽微の両説を取り上げている
(倉田自身は後者(影響は軽微)みたい)
URLリンク(www.amazon.co.jp)
ガロアを読む―第1論文研究 単行本 – 1987/7/15 倉田 令二朗 (著)
以前の書いたが、高瀬オイラー研究所所長は、ガウスの影響大だと(下記)
URLリンク(reuler.blog108.fc2.com)
20080426アーベル方程式とガロアの第一論文
(抜粋)
ガウスが円周等分方程式を解いていく道筋を忠実に再現すれば、そのままガロア理論が出現するという事実もまた注目に値します。
アーベルはガウスの理論の根幹をなす数学的思想の泉から直接、アーベル方程式の概念を取り出しましたが、ガロアはガロアでガウスの理論の「証明の構造」を学び、ガウスの理論をその雛形と見ることを可能にする大きな理論を構想したのでした。
ガウスに端を発し、アーベルが洞察した代数的可解性の基本原理は、ガロアに継承されてひとつの完結した姿形を獲得したのでした。
ガロアが言及しているもうひとつの応用例は、楕円関数論におけるアーベルの予想の証明である。
アーベルは論文「楕円関数研究」において、モジュラー方程式は一般に代数的には解けないであろうと予想しましたが、ガロアはこれを受けて次のように述べています。
《代数方程式論のさまざまな応用のうち、一部分は楕円関数の理論のモジュラー方程式に関係がある。
モジュラー方程式を冪根を用いて解くのは不可能であることが証明されるであろう。》
楕円関数論と代数方程式論の関係は密接かつ不可分であり、しかもアーベルの予想の証明こそ、ガロアの理論の眼目なのでした。
ガロアの言葉にはガウス、ルジャンドル、アーベル、ヤコビなどの手になる浩瀚な楕円関数論の全史が凝縮されていて、印象は深遠です。
さながら数学の神秘の淵をのぞき見るような感慨があります