15/03/28 10:58:56.92 XpA6GK50.net
>>682 つづき
それで、>>641でしめしたのは、「逆の包含、すなわち「g・Ker(f)・g^(-1) ⊃ Ker(f)」の証明」をちょっと変形した
少し説明すると、集合N'= {gng^-1 | n∈Ker(f), g∈G } として
641の2と3で、card(N')=card(Ker(f))(∵ gn1g^-1≠gn2g^-1→n1≠n2が言える(なお、逆も同様))を示した
これと、1のg・Ker(f)・g^(-1) ⊂ Ker(f) から「N=gNg^-1」が成り立つと
(有限群に限って分かり易く説明すれば、集合N'とKer(f)との要素の個数が同数で、g・Ker(f)・g^(-1) ⊂ Ker(f) だから「N=gNg^-1」だと)
逆の包含を使うより、共役の性質(一対一対応)を強く使う方が本質だろうと思ったからだ
もう少し丁寧に書けば
写像f^-1:N'→Ker(f) (gng^-1→n)が単射(∵ n1=n2→gn1g^-1=gn2g^-1)が容易に言える
(なお、gの逆元を使う共役変換を考え、写像f^-1:g^-1(gng^-1)g→n とすれば分かり易いだろう)
また、g^-1(gng^-1)g→nの形から、n=g^-1(gng^-1)g つまり、g'=g^-1と書けば、n=g'(g'^-1 n g')g'^-1と書けて
g・Ker(f)・g^(-1) ⊂ Ker(f) を示しているから、g'^-1ng'∈Ker(f)
従って、n=g'(g'^-1ng')g'^-1∈N'として、逆の包含も直接示せる。が、かえって回りくどくて本質が見えないだろうと思った