現代数学の系譜11 ガロア理論を読む12at MATH
現代数学の系譜11 ガロア理論を読む12 - 暇つぶし2ch427:現代数学の系譜11 ガロア理論を読む
15/03/07 15:38:17.09 CATUi/5b.net
>>390-394の代数的数関連部分
ここは、初心者も来ると思うので、世間の代数的数の定義を確認しておこう(下記。文字化けは修正せず)
URLリンク(ja.wikipedia.org) 抜粋
数学、特に代数学における代数的数(だいすうてきすう、英: algebraic number)とは、ある有理数係数の 0 でない多項式の根となる複素数のことである。
代数学の標準的な記号 \ \mathbb{Q}[x]\ で有理数係数多項式全体を表し、代数的数全体の集合を、代数的数 algebraic number の頭文字を使って \ A\ と書けば、
A=\Big\{a \in \mathbb{C}\ \Big|\ \big(\exists p(x) \in \mathbb{Q}[x]\big)\big[p(x) \neq 0 \ \&\ p(a)=0\big]\Big\}
となる。
概要
複素数 α に対し、有理数を係数とする多項式
f(x) = x^n + a_{n-1} x^{n-1} + \cdots + a_0
が存在して、f(α) = 0 となるとき α を代数的数という。
α が有理数ならば
f(x) = x - α
は、α を根に持つので、有理数はすべて代数的数である。
無理数ではたとえば \sqrt{2} は
f(x) = x2 - 2
の根であるので代数的数であるし、複素数でも
f(x) = x2 + 1
の根である ±i は代数的数である。
しかしながら、全ての無理数が代数的数であるかというと、そうではないことが知られている。たとえば円周率 π や 自然対数の底(ネイピア数)e は、0 以外のいかなる有理数係数多項式に対しても、根になることはない。
このような数のことを超越数と呼ぶ。


次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch