現代数学の系譜11 ガロア理論を読む12at MATH
現代数学の系譜11 ガロア理論を読む12 - 暇つぶし2ch384:∈T(s)であるから、 mをZの変数とすれば、定義から任意のe^{i(mt)π}∈T(t)に対して f(g,e^{i(mt)π})=(g,e^{i(mt)π})→g・e^{i(mt)π}∈T(t) が一意に定まる。 つまり、f(g,T(t)):{g}×T(t)→T(t)は全単射である。よって、m=1とすれば、 f(g,e^{itπ})=(g,e^{itπ})→g・e^{itπ}∈T(t) が一意に定まる。 ここで、-1<s<0<t<1であるから、複素平面Cの実軸に関する対称性から g・e^{itπ}=1。また、g=e^{isπ}だったから、g・e^{itπ}を計算すると g・e^{itπ}=e^{i(t+s)π}。従って、e^{i(t+s)π}=1であり、 偏角の範囲を(-π,π]として両辺に主値を取れば、i(t+s)π=0となり、 i≠0<πからt+s=0であり、|s|=|t|が得られるが、s、tが満たす条件|s|>|t|に反する。




次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch