現代数学の系譜11 ガロア理論を読む12at MATH
現代数学の系譜11 ガロア理論を読む12 - 暇つぶし2ch246:132人目の素数さん
15/03/01 09:44:38.85 NplpTsbd.net
>>227-233
どうも。スレ主です。
”おっちゃん”答え書いたのか?
いや、そろそろ答えを書こうかと思ったが、>>203のバカを晒すために、もう少し伸ばすことにしたんだが>>211
まあ、どうせあのバカには読めないだろうし、読んでも理解できないだろうが・・

247:132人目の素数さん
15/03/01 09:49:34.43 WbtuUWlv.net
>>233
まだやってたのか。
>227-230までは基本事項であり、「自明」で済ませてよく、わざわざ書くまでもない。
肝心の>>231, >>233 は大間違い。というわけで、お前は実際には何も示せていない。
恥の上塗り。いい加減に消えろよザコが。

以下、>>231について具体的にコメント。
>[第5段]:任意の異なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
このような主張はそもそも成り立たない。s=√2, t=-√2と置けば、
s,t∈R-Qかつs≠tであるが、しかしT(s)=T(t)が成り立っている。
T(θ)が非可算無限個存在することを言うには、前スレのハメル基でも使えばよいのであって、
前スレで終わっている話である。あるいは、スレ主の { a^n|n∈Z } (aは1より大きな実数)を
使えば良いのであり、どのみち前スレで話は終わっている。

248:132人目の素数さん
15/03/01 10:08:05.79 NplpTsbd.net
>>227-233
どうも。スレ主です。
”おっちゃん”らしい答えやね
前スレであった通り、下記が当てはまると思うよ
スレリンク(math板:524番)
524 :132人目の素数さん:2015/02/02(月) 15:00:29.48 ID:rAtp1PBP
おい、こら
延々自明で済むことを証明してるな
スレリンク(math板:566番)
566 :132人目の素数さん:2015/02/03(火) 20:31:59.04 ID:KYB7IjhQ
でも>>558は幾らなんでもアホだろ。
そもそもの問題からしてくだらないのに、自明な部分は長文の証明で埋め尽くし、
肝心な部分(異なるH(*)が非可算無限個とれるところ)はいつまで経っても証明できてない上に、
スレ主の方が既に証明できちゃってるという本末転倒ぶり。出題者のくせに何やってんだよ。

249:132人目の素数さん
15/03/01 10:16:32.61 NplpTsbd.net
>>236
どうも。スレ主です。
わざわざお手�


250:マわせて恐縮です。手間省こうと、>>237を引用したけど・・ ”おっちゃん”に 1.まあ、そのー、wikipediaとかネット検索とか、あるいは教科書など数学本でも、既にどこかに書いてあって認められていることは既知で良いでしょ 2.あと、それ常識だと思うけど、2ちゃんねるという場所は、英語の数学専門掲示板と違って、記号など書けないんだよね(上で図を入れた人がいたけど、それは例外として) 3.それから、しょせん証明の細部を議論するところじゃない



251:132人目の素数さん
15/03/01 10:37:22.49 CQbZyxiT.net
>>212
失礼、失礼。>>233は撤回。>>231の第5段は次のように訂正。
[第5段]:任意のs>t>1なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
確かに任意のθ∈R\Qに対して群T(θ)は定まる。
矛盾に導くため、或る異なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
すると、T(s)、T(t)は両方共に複素平面Cの単位円周上の部分集合だから、
或る(m,n)∈(N\{0})^2が存在して、e^{i(msπ)}=e^{i(ntπ)} …①であり、e^{i(msπ-ntπ)}=1。
よって、偏角の不定性に注意し両辺に主値を取ると、或るk∈Zが存在して、
i(msπ-ntπ)=i(kπ)から、ms-nt-k=0…②、よってn≠0から、(m/n)s-t-k/n=0。
故に2つの無理数s、tの集合{s,t}は有理数体Q上線型従属であり、t=(m/n)s-k/n。
T(s)=T(t)だから、T(t)=T((m/n)s-k/n)。
ここで、群T(s)は={e^{i(m_1sπ)}∈C^{×}|m_1∈Z}と定義される。
また、群T(t)=T((m/n)s-k/n)は、={e^{i(m_1((m/n)s-k/n)π)}∈C^{×}|m_1∈Z}と定義される。
e^{i(sπ)はm_1=1のときのT(s)の点、e^{i(((m/n)s-k/n)π)}はm_1=1のときのT(t)の点
であるから、e^{i(sπ)=e^{i(((m/n)s-k/n)π)}…③ または e^{i(sπ)=e^{-i(((m/n)s-k/n)π)}…④
のどちらか片方かつその一方に限り成り立つ。

252:132人目の素数さん
15/03/01 10:38:47.54 CQbZyxiT.net
>>212
(>>239の続き)
Case1)③が成り立つとき。③から、e^{i((((m/n)-1)s-k/n)π)}=1。
任意の有理数aと任意の無理数bについて、{a,b}は体Q上線型独立だから、(m/n)-1=0から、m=n。
従って、群T(t)つまりT((m/n)s-k/n)は、T(t)={e^{i(m_1(s-k/n)π)}∈C^{×}|m_1∈Z}と表わされる。
e^{i(sπ)}はm_1=1のときのT(s)の元、e^{i((s-k/n)π)}はm_1=1のときのT(s)の元
だから、e^{i(sπ)}=e^{i((s-k/n)π)} または、e^{i(sπ)}=e^{-i((s-k/n)π)}
のどちらか片方かつその一方に限り成り立つ。つまり、e^{i(-k/n)π)}=1 または、e^{i(2s-k/n)π)}=1
のどちらか片方かつその一方に限り成り立つ。然るに、任意の有理数aと任意の無理数bについて、
{a,b}は体Q上線型独立だから、e^{iθπ}=1を満たす実数θは有理数であることに注意すると、
e^{i(2s-k/n)π)}≠1であって、e^{i(-k/n)π)}=1となる。よって、kに対し或るj∈Zが存在して
k=2jπ。πは無理数、kは整数だから、j=0からk=0。よって、
②からms-nt=0、故にm=nからs=tが得られ、これはs≠tに反し矛盾。
Case2)④が成り立つとき。④から、e^{i((1+m/n)s+k/n)π)}=1。
然るに、任意の有理数aと任意の無理数bについて、{a,b}は体Q上線型独立だから、
e^{iθπ}=1を満たす実数θは有理数であることに注意すると、e^{i(2s+k/n)π)}≠1であって矛盾。
Case1、2から、異なるs、t∈R\Qが存在して、T(s)=T(t)とすると、矛盾が生じる。

253:132人目の素数さん
15/03/01 10:43:50.73 CQbZyxiT.net
>>236
これは延長戦だ。単射性を示すには、本当はハメル基底もいらない。

254:132人目の素数さん
15/03/01 10:51:23.06 NplpTsbd.net
>>238 つづき
1.だから、学会レベルの証明とか、新理論とか、新別証明なんか、2ちゃんねるという場所はふさわしくない
2.なので、カントールとかゲーデルとか、それ(下記)全部引用で済ますべき事項なんだわ
 ・[第1段]:有理直線Qが可算無限集合であることを示す。 >>227
 ・[第2段]:実数直線Rが非可算無限集合であることを示す。 >>228
 ・[第3段]:無理数の全体R\Qが非可算無限集合であることを示す。 >>229
 ・[第4段]:任意のθ∈R\Qに対してT(θ)がC^{×}の正規部分群であることを示す。 >>230
3.第1段から第4段まで、引用も不要のレベル(既知で終わり)だろう。少なくとも、2ちゃんねるで素人の新証明読む時間があったら、専門書読めと
4.”[第5段]:任意の異なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。 ”って、証明に穴があるし
5.それに、部分群の理解が甘いから、証明がぐしゃぐしゃと思うよ
6.で、蛇足だが、部分群の集合をUとして、「実数R or 複素数Z(除くゼロ)→Uの単射の存在」を一言入れること。ほぼ自明だが
  院試なら減点されるかもしらんよ。濃度の議論だからね
7.で、>>194出題の「連続濃度の”べきの濃度”を持つ」については、一歩も踏み込んでいないぞ
8.単に、非可算無限集合なら、>>236にあるように { a^n|n∈Z } (aは1より大きな実数) (つまり、1より大きな実数a一つから生成される乗法群)に問題を落としてしまえば
9.この部分集合U'として、 { a|a>1, a∈R } →U'の単射を示すのは簡単(前スレ>>508参照(複素数の絶対値で考えているがRでも同じ) )だから
10.U'⊂Uとすれば、証明は終わり。({ a|a>1, a∈R }の非可算は既知とする。)

255:132人目の素数さん
15/03/01 10:56:31.71 CQbZyxiT.net
>>212
>>240のCase2の「e^{i(2s+k/n)π)}≠1であって矛盾。」は、
「e^{i((1+m/n)s+k/n)π)}≠1であって矛盾。」の間違い。

256:132人目の素数さん
15/03/01 10:56:42.30 NplpTsbd.net
>>241
では、お任せします(しばらく位相を書く)

257:132人目の素数さん
15/03/01 11:00:38.03 z5wmYR0N.net
せやな、スレ主その他、頭悪いのがウリジナリティに拘って延々証明もどきを書きなぐってる所か。
ゴタゴタ書く前に、全体の要約スケッチぐらい書かんかいアンポン!
論理�


258:フ森で迷子になってグルグル回る自分の姿が見えるでw 嵌める基が要らん? ほざけ! おまいのバカ論法で、簡潔なハメル基の議論を代替するなどまず不可能。



259:132人目の素数さん
15/03/01 11:06:19.28 NplpTsbd.net
前スレ再録
スレリンク(math板:817番)
URLリンク(www.math.sci.hiroshima-u.ac.jp)
ガロア理論 松本眞 平成18 年11 月22 日 広島大
2 無限次ガロア理論16
2.1 無限次ガロア理論の基本定理: : : : : : : : : : : : : : : : : : : 16
2.2 profinite 位相: : : : : : : : : : : : : : : : : : : : : : : : : : : : 17
スレリンク(math板)
URLリンク(www.amazon.co.jp)
ガロア理論講義 (日評数学選書) 単行本 – 2003/4 足立 恒雄 (著)
無限次Galois拡大についても触れられている点が良かった。和書では少ないと思う。

260:132人目の素数さん
15/03/01 11:07:46.59 6jYFoyih.net
>>241
延長戦?
未だに正しい証明が書けないのか?
自分の無知、馬鹿、未熟を自覚しろ!

261:132人目の素数さん
15/03/01 11:09:03.92 6jYFoyih.net
>>246
他人のコメント朴って知ったかするのがおまいの流儀かwww

262:132人目の素数さん
15/03/01 11:10:58.43 NplpTsbd.net
>>246 つづき
ガロア理論講義 (日評数学選書) 単行本 – 2003/4 足立 恒雄 (著)
の「無限次ガロア拡大の理論」が読めなかった
で、>>234 村上 仙瑞(せんずい) を読んだ
なかなか良い本です。分かり易い。お薦めです
本になる前のPDFが落ちているみたいだが、絶対本の方が良いでしょう

263:132人目の素数さん
15/03/01 11:11:22.42 CQbZyxiT.net
>>236
>[第5段]:任意の異なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
>>このような主張はそもそも成り立たない。s=√2, t=-√2と置けば、
>>s,t∈R-Qかつs≠tであるが、しかしT(s)=T(t)が成り立っている。
そうおくと、
T(√2)={e^{i(m√2)π)}∈C^{×}|m∈Z}、
T(-√2)={e^{i(-m√2)π)}∈C^{×}|m∈Z}
になるが。-e^{i(m√2)π)}とe^{i(-m√2)π)}とを混同しているのではないか?

264:132人目の素数さん
15/03/01 11:17:16.08 NplpTsbd.net
>>249 つづき
位相は、村上 仙瑞(せんずい)に任せて、射影極限(文字化け放置)(lim← みたいに書くんやね)
URLリンク(ja.wikipedia.org)
数学における逆極限(ぎゃくきょくげん、英: inverse limit)あるいは射影極限(しゃえいきょくげん、英: projective limit)は、正確な言い方ではないが、
いくつかの関連する対象を「貼合せる」ような構成法であり、貼合せの具体的な方法は対象の間の射によって決められている。
逆極限は任意の圏において考えることができる。

Ai を長さiの有限数列全体からなる集合、fij (i≤j) を数列をi項に切り詰める写像とすると、その射影極限は、数列全体の集合となる。
p-進整数全体の成す環 Zp は、自然数全体に通常の順序を入れたものを添字集合とする整数環の剰余類環の族 Z/pnZ でそれらの間の射として、「剰余の取替え」で得られる準同型をとったものの成す射影系から射影極限として得られる。
p-進整数環における自然な位相は、射影極限としての位相に一致する。
可換環 R 上の形式冪級数環 R[[t]] は、自然数の全体に通常の順序を入れたもので添字付けられる、環の族 R[t]/tnR[t] が自然な射影
R[t]/t^{n+j}R[t] \to R[t]/t^nR[t]
を射として成す射影系の射影極限と見なすことができる。
副有限群は(離散)有限群の射影極限として定義される。
逆系 (Xi, fij) の添字集合 I が最大元 m を持つならば、射影極限 X からの自然な射影 πm: X → Xm は同型である。
位相空間の圏における逆極限は、逆系の各台集合に対して単に集合としての逆極限をとったものを台集合とし、それに始位相を入れて得られる位相空間である。これは極限位相としても知られる。
無限文字列全体の成す集合は有限文字列の集合の逆極限であり、�


265:オたがって極限位相を持ちうる。 もともとの空間が離散的ならば、得られる極限位相は完全不連結になる。これは、p-進数全体の成す集合やカントール集合を(無限文字列として)実現する一つのやり方である。 三つの元からなる添字集合 I = {i, j, k} で i ≤ j かつ i ≤ k とする(これも有向集合ではない)と、そのような任意の逆系の逆極限は引戻しである。



266:132人目の素数さん
15/03/01 11:21:37.23 6jYFoyih.net
悲報!
・スレ主が圏論に興味をもったようです

267:132人目の素数さん
15/03/01 11:22:29.38 NplpTsbd.net
>>251 つづき
射有限群 (副有限群から転送)
URLリンク(ja.wikipedia.org)
数学において射有限群(しゃゆうげんぐん、英語: pro-finite group)あるいは副有限群(ふくゆうげんぐん)は、有限群の射影系の極限になっているような位相群である。
ガロア群やp-進整数を係数とする代数群など、数論的に興味深い様々な群が射有限群の構造を持つ。
射有限群は完全不連結でコンパクトなハウスドルフ位相群として定義される。
同値な定義として、離散有限群の成す射影系(逆系)の射影極限(逆極限)として得られる位相群に同型であるような群を射有限群と定めるいうこともできる。

有限群は離散位相に関して射有限である。
p-進整数全体の成す加法群 Zp は射有限である(実際にはさらに射巡回的である)。この群は、n を全ての自然数を亘って動かすとき、有限群 Z/pnZ とそれらの間の自然な射影 Z/pnZ → Z/pmZ (n ≥ m) が成す射影系の射影極限になっており、略
体の無限次拡大のガロア理論では、射有限なガロア群が自然に現れる。具体的に、L/K を(無限次元の)ガロア拡大とし、K の元を動かさない L 上の体自己同型全体の成す群 G = Gal(L/K) を考える。
この無限ガロア群は、F が F/K が有限次ガロア拡大であるような L/K の中間体すべてを亘るとき、有限ガロア群 Gal(F/K) が成す射影系の逆極限である。
この射影系における射は、F2 ⊆ F1 なるとき、制限準同型 Gal(F1/K) → Gal(F2/K) で与えられる。
得られる Gal(L/K) の位相はヴォルフガンク・クルルに因んでクルル位相 (Krull topology) として知られる。
ウォーターハウスは「任意の」射有限群が、「ある」体 K 上のガロア群に同型なる群として得られることを示した[1]が、このとき具体的にどのような体 K を選べばよいか決定する方法はいまだ知られていない。
事実、多くの体 K で、どのような有限群が体 K 上のガロア群として得られるかということは一般にははっきりしない。
このような問題は体 K に対するガロアの逆問題と呼ばれる(複素一変数の有理函数体のように、ガロアの逆問題が解決されている体もある)。
代数幾何学において考察される基本群もまた射有限である。略

268:132人目の素数さん
15/03/01 11:25:44.77 NplpTsbd.net
>>252
ども
圏論は、前から興味があってね、過去なんども取り上げているが、ほんの一部しかわからん(それもあやしいかも)
まあ、圏論もそのうち(いまどき、常識になっている部分が多い感じがするよね。普通に出てくる・・)

269:132人目の素数さん
15/03/01 11:28:01.60 NplpTsbd.net
>>253
つづき
村上 仙瑞(せんずい)読む前は、1行ごとに分からんという感じだったけど
いまでは、多少読めるように
理解はまだまだだが

270:132人目の素数さん
15/03/01 11:36:39.61 TS3FUA1w.net
普通に教科書買って地道に勉強するのが一番
スレ主流勉強法では三年かかってこのザマ

271:132人目の素数さん
15/03/01 11:37:47.11 UU3cJ8On.net
>>256
マセマでガロア理論って無い?

272:132人目の素数さん
15/03/01 11:53:04.91 NplpTsbd.net
激励ありがとう
三年かかってこのザマだったら、早い方でしょ?w
だれか「良い本ないか」とか言っていたね・・。前にも紹介した、下記Kojimaだが
hiroyukikojima先生、東大数学科卒で、四半世紀も過ぎて達した境地だという
私が、Kojimaの境地まで到達できたかどうか不明だが、草場公邦は手元にある
URLリンク(d.hatena.ne.jp)
hiroyukikojimaの日記 2008-03-27 ガロアの定理をわかりたいならば
 数学書の読みやすさとは、人によって違うと思う。
それは、「わかるツボ」というのが人によって違うからだ。幾何的なイメージなしには進むことができない人もいれば、
むしろ逆に、非常に形式化されてがちがちに論理的な進み方をしないとわかったような気がしない、という人もいると思う。
だから、何か数学的な知識の必要があった場合、何冊にもチャレンジして自分に合った教科書を探すのがベストだと思う。
 ただ、最大多数にわかりやすい数学書となると、数は限られてくる。
数学の本を書くのを生業としているぼくでさえ、「よくわかる」本と出会えることは滅多にない。
そんな中、最近になって出会って、すばらしいと思っているのは草場公邦先生の本である。以下の三冊を読んだ。
どれもすばらしいが、とりわけ最初の『ガロワと方程式』はめちゃめちゃいい。
ぼくは、数学科のときは代数を専攻したので、ガロア理論は必須の道具であり、一生懸命勉強したのだけど、最終的に「身体でわかった!」というところにたどり着くことができなかった。
おおざっぱには捉えることはできたんだけど、機微が掴めておらず、少なくとも「アタリマエ」になるほどには理解していなかったのである。( そんなだから数学の道に挫折することになったのだけどね)。
ところが、最近になってこの『ガロワと方程式』を読んで、急に視界が開け、「アタリマエ」とまではいわないけど、「よくできた自然な理論だなあ」というところまで理解できるようになってしまったのだ。
数学科で勉強していた頃から見れば、もう四半世紀も過ぎて達した境地というのもスゴイやら情けないやらである。

273:132人目の素数さん
15/03/01 12:03:21.75 CQbZyxiT.net
>>239-240の
>矛盾に導くため、或る異なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
の「或る異なるs、t∈R\Qが存在して」は「或るs>t>1なるs、t∈R\Qが存在して」の間違いだった。
あと、>>250は間違いでとぼけて書いちゃったw 偏角の不定性を無視すれば、もっと単純に示せるんだが。
>>247
>>239-240の論法は間違いなのか?

274:132人目の素数さん
15/03/01 12:07:18.64 UU3cJ8On.net
ハメル基を使わない積極的理由が無い
使わないのは単なる自己満足

275:132人目の素数さん
15/03/01 12:08:06.24 NplpTsbd.net
>>256
ども
ID:TS3FUA1wくんね、君にも>>194の問題投げておくよ
まあ、口ではなんとでも言えるわ
「普通に教科書買って地道に勉強するのが一番
スレ主流勉強法では三年かかってこのザマ 」
はいはい、お説の通りです。なら、>>194は簡単やろね・・、っておまえには解けそうに思えないがね

276:132人目の素数さん
15/03/01 13:17:54.99 CQbZyxiT.net
>>212
じゃ、>>239-240の第5段は次のようにして読んで。
ハメル基底をHで表わす。
[第5段]:任意の異なるs、t∈Hに対してT(s)≠T(t)であることを示す。
Hが可算無限集合集合だったとする。基底ベクトルの
有理数体Q上一次独立性についてのハメル基底の定義から、
任意のr∈Rに対して或るn∈N\{0}が一意に存在して、更にrに対して或る
((a_1,…,a_n)、(r_1,…,r_n))∈Q^{n}×H^{n}が一意に定まって、
r=a_1・r_1+…+a_n・r_n。また、Q、Hは可算無限だから、
任意のm∈N\{0}に対して、Q^{m}、H^{m}は可算無限で、Q^{m}×H^{m}は可算無限。よって、
A={((a_1,…,a_m)、(r_1,…,r_m))∈Q^{m}×H^{m}|m∈N\{0}、a_1・r_1+…+a_m・r_m∈R}
とおくと、Aは可算無限集合で、Hの基底ベクトルの有理数体Q上線型独立性
についてのハメル基底の定義から、RからAへの単射fが存在する。
しかし、Rは非可算、Aは可算無限だから、fは存在し得ず


277:矛盾。 故に、Hは非可算集合である。任意のs≠tなるs、t∈Hに対して 基底ベクトルs、tはQ上線型独立だから、T(s)≠T(t)である。



278:132人目の素数さん
15/03/01 13:28:37.06 CQbZyxiT.net
>>212
>>262の上の「Hが可算無限集合集合だったとする。」の「可算無限集合集合」は「可算無限」の間違い。

279:132人目の素数さん
15/03/01 13:56:33.54 WbtuUWlv.net
>>239, >>259
>[第5段]:任意のs>t>1なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
それでもダメ。s=√2+2, t=√2と置くと、s>t>1かつs,t∈R-Qであるが、
T(s)=T(t)が成り立っている。
恥の上塗り。消えろザコ。
>>262
論旨がメチャクチャ。
>[第5段]:任意の異なるs、t∈Hに対してT(s)≠T(t)であることを示す。
これを示すにあたって、Hが可算無限であるか否は全く不必要な情報であり、必要な情報は
>任意のs≠tなるs、t∈Hに対して
>基底ベクトルs、tはQ上線型独立だから、T(s)≠T(t)である。
この2行だけであり、[第5段]の証明はこの2行で終わっている。
>>262のその他の行は全て「Hが非可算無限であることの証明」に関する記述であり、
[第5段]の証明とは関係が無い。
C^x の正規部分群が非可算無限個あることを証明するときに初めて、
Hが可算無限かどうかという情報が必要になるのであり、そこで初めて
Hの濃度に関する議論を行うのが正しい順番である。>>262のように、
ぐちゃぐちゃの順番で情報が羅列してあるのは もはや国語の問題である。
さらに言うと、ハメル基を使うのなら、それは前スレで完全に終わっている話題なのであり、
わざわざ全く同じ話題を>>262で焼き直す必要は無い。
そもそも、話の発端は「私が用意していた解答をする(>>227)」というものであったはずだ。
それなのに、前スレの「ハメル基」まで話題が逆行してしまうのであれば、もはや本末転倒である。
恥の上塗り。消えろザコ。

280:132人目の素数さん
15/03/01 14:02:17.83 CQbZyxiT.net
>>212
>>262の上の「任意の異なるs、t∈Hに対してT(s)≠T(t)であることを示す。」の部分の「s、t∈H」と、
下の「故に…」の行の「任意のs≠tなるs、t∈Hに対して」の「s、t∈H」は、
両方「s、t∈H\Q」の間違い。

281:132人目の素数さん
15/03/01 14:05:47.54 DJAXK5NT.net
論証の森で遭難中

282:132人目の素数さん
15/03/01 14:21:05.19 z5wmYR0N.net
>>264
演習がてらハメル使ってみたので、見てください
赤ペン先生だろw

283:132人目の素数さん
15/03/01 14:36:31.17 CQbZyxiT.net
>>264
>そもそも、話の発端は「私が用意していた解答をする(>>227)」というものであったはずだ。
最初は>>239-240で正しいと思ったが、ケチを付けられてな。ハメル基底を用いるなら、話は別だ。

284:132人目の素数さん
15/03/01 14:41:29.86 CQbZyxiT.net
>>212
ということで、書き直し。
ハメル基底をHで表わす。
各θ∈Hに対して、集合T(θ)をT(θ)={e^{i(mθπ)}∈C^{×}|m∈Z}と定義する
と、T(θ)≠φ。a、b、c∈T(θ)を任意に取る。すると、|a|=|b|=|c|=1<2から、
a、b、cの各主値Log(a)、Log(b)、Log(c)が定義されるから、a、b、cに対して
或るm_1、m_2、m_3∈Zが存在して、a=e^{i(m_1θ)π}、b=e^{i(m_2θ)π}、c=e^{i(m_3θ)π}
となる。よって、A={a、b、c}とおくと、A⊂C^{×}であり、加法定理から、任意のx、y∈Aには
通常の乗法・:A×A∋(a,b)→a・b=ab∈T(θ)の演算が定義され、任意のa、b、c∈Aに対して
(1):結合則(ab)c=a(bc)が成り立ち、(2):e^0=1∈T(θ)であり、a1=1a=aである。
更に、偏角の不定性に注意してm_1θ∈[0,2π)とすれば、
a^{-1}=(e^{i(m_1θ)π})^{-1}=e^{-i(m_1θ)π}だから、
同様に加法定理から、aa^{-1}=a^{-1}a=1 である。T(θ)の元a、b、cは任意だから、
a、b、cをT(θ)上で走らせると、確かにT(θ)には通常の乗法
・:T(θ)×T(θ)∋(a,b)→a・b=ab∈T(θ)の二項演算が定義され、
T(θ)は乗法・について実数1を単位元とするような群である。つまり、T(θ)は乗法群であり、
満たすべき条件を満たす。任意のa、b∈T(θ)に対して、加法定理からab=baだから、
T(θ)は可換乗法群である。今、C^{×}の正規部分群が非可算個存在することを示す。
任意のθ∈Hに対して定まる群T(θ)について、T(θ)⊂C^{×}であり、C^{×}には
T(θ)と同じ通常の二項演算・が定義されていることに注意すると、
通常の乗法・の二項演算について、T(θ)は乗法群C^{×}の部分群である。

285:132人目の素数さん
15/03/01 14:43:09.30 CQbZyxiT.net
>>212
(>>262の続き)
[第1段]:任意のθ∈Hに対してT(θ)がC^{×}の正規部分群であることを示す。
θ∈Hを任意に取る。群T(θ)をT、乗法群C^{×}をGで略記する。g∈Gを任意に固定する。
gTg^{-1}=Tを示す。h∈Tを任意に固定する。すると、T⊂Gから、h∈G。
また、Gは通常の乗法・について可換群だから、g^{-1}∈G。
よって、g、h、g^{-1}の間には互いに通常の可換な乗法・の二項演算が定義され、
ghg^{-1}=g(hg^{-1})=g(g^{-1}h)=(gg^{-1})h=1h=h。h∈Tだから、ghg^{-1}∈T。
Tの元hは任意だったから、gによるTの両側剰余類


286:gTg^{-1}は={gh'g^{-1}|h'∈T} と表わされる集合であることに注意して、hをTの中で動かせば、gTg^{-1}⊂T。 再度h∈Tを任意に固定する。すると、g、h、g^{-1}の間には互いに通常の可換な乗法・の二項演算が 定義され、h=1h=(gg^{-1})h=g(g^{-1}h)=g(hg^{-1})=ghg^{-1}。ここで、 gによるTの両側剰余類gTg^{-1}は={gh'g^{-1}|h'∈T}と表わされる集合である。 よって、ghg^{-1}=h∈gTg^{-1}。Tの元hは任意だったから、hをTの中で動かせば、T⊂gTg^{-1}。 gTg^{-1}⊂T、T⊂gTg^{-1}だから、gTg^{-1}=T。故に、TはGの正規部分群である。 これでT(θ)はC^{×}の正規部分群であることが示された。 Hの基底ベクトルθは任意だから、θをHの上で走らせればよい。



287:132人目の素数さん
15/03/01 14:45:43.81 CQbZyxiT.net
>>212
(>>270は、>>262でなく>>269の続き)
(>>270の続き)
[第2段]:Hが非可算集合であることを示す。
Hが可算無限集合だったとする。基底ベクトルの
有理数体Q上一次独立性についてのハメル基底の定義から、
任意のr∈Rに対して或るn∈N\{0}が一意に存在して、更にrに対して或る
((a_1,…,a_n)、(r_1,…,r_n))∈Q^{n}×H^{n}が一意に定まって、
r=a_1・r_1+…+a_n・r_n。また、Q、Hは可算無限だから、
任意のm∈N\{0}に対して、Q^{m}、H^{m}は可算無限で、Q^{m}×H^{m}は可算無限。よって、
A={((a_1,…,a_m)、(r_1,…,r_m))∈Q^{m}×H^{m}|m∈N\{0}、a_1・r_1+…+a_m・r_m∈R}
とおくと、Aは可算無限集合で、Hの基底ベクトルの有理数体Q上線型独立性
についてのハメル基底の定義から、RからAへの単射fが存在する。
しかし、Rは非可算、Aは可算無限だから、fは存在し得ず矛盾。 故に、Hは非可算集合である。
[第3段]:任意の異なるs、t∈H\{0}に対してT(s)≠T(t)であることを示す。
確かに任意のθ∈H\{0}に対して群T(θ)は定まる。
任意のs≠tなるs、t∈H\{0}に対して、基底ベクトルs、tはQ上線型独立だから、T(s)≠T(t)である。
これでC^{×}の正規部分群が非可算無限個存在することは示された。

288:132人目の素数さん
15/03/01 14:51:32.09 CQbZyxiT.net
>>264
そもそも、論文にしている訳ではあるまいし、
2チャンで論旨がどうのこうのとか関係ないだろw
ハメル基底を用いるなら、有理直線Qは可算無限集合、R\Qは非可算集合は前提だ。

289:132人目の素数さん
15/03/01 15:09:29.11 CQbZyxiT.net
まあ、正確には「>>239-240の手法で示せると思った」だがな。

290:132人目の素数さん
15/03/01 15:32:50.43 WbtuUWlv.net
>>272
>そもそも、論文にしている訳ではあるまいし、
>2チャンで論旨がどうのこうのとか関係ないだろw
バーーーーカ。お前のやってることはダブルスタンダードだよ。
2チャンで論旨がどうのこうのとか関係ないのであれば、
>>262では いい加減な書き方をしたけど、そのまま書き直さないことにする」
として済ませるのが筋だろう。
にも関わらず、実際には>>269-271で「整理して書き直している」ではないか。
論旨を気にしまくっているではないか。
しかも、俺の指摘どおりに「[第5段]の証明」と「Hが非可算無限であることの証明」を
キレイに分割しているではないか。論旨を気にしまくっているではないか。
もっと言えば、>>227-230の「ご丁寧な証明」の時点で、論旨を気にしまくっているではないか。
こんなものは全て「自明」でいいんだよ。にも関わらず、ご丁寧に証明しているではないか。
いい加減にしろよザコが。
清書した>>269-271にしたって、結局は前スレの話題に過ぎず、
ここで蒸し返すようなことでは無いんだよ。
結局お前は、自分の方針では何1つとして証明できず、
前スレの話題に頼らざるを得なかったわけだ。
しかも、>>272のような負け惜しみと来たもんだ。実に笑えるw

291:132人目の素数さん
15/03/01 15:48:00.74 TS3FUA1w.net
人に読んでもらってわかってもらうには、論旨(が筋道立っていて論理的であること)は大事
2ちゃんでも論文でも

292:132人目の素数さん
15/03/01 15:48:51.22 CQbZyxiT.net
>>274
自明な議論は、スレ主宛てだ。スレ主でも分かるように書いた。
本当は、>>239-240の手法で示せると思うのだがな。
ハメル基底の議論では、有理直線Qは可算無限集合、R\Qは非可算集合が前提になるが。

293:132人目の素数さん
15/03/01 15:50:48.41 WbtuUWlv.net
>>273
>まあ、正確には「>>239-240の手法で示せると思った」だがな。
>>239-240は間違ってるからダメだけど、ハメル基を使わない方針でもちゃんと示せるよ。
お前の低レベルな脳みそでは間違った証明しか出来なかっただけで。
「ハメル基でいいじゃん」という突っ込みは、お前の間違った証明だからこその
突っ込みなのであり、「私が用意していた解答をする(>>227)」の時点で
1発でスパッと正しい証明(ハメル基でないもの)が提示できていたら、
このような突っ込みが出る幕は無かったんだよ。情けない話だな。
自分流の証明をやってみた
→ 間違っていた
→ ハメル基でいいじゃんという突っ込みが入る
→ ハメル基を使った証明に乗り換える(この時点でお前の負け)
→ ハメル基だったら前スレで終わってるから、蒸し返す必要がないという別の突っ込みまで入る
お前のやってることは周回遅れなんだよ。まるで話しにならない。

294:132人目の素数さん
15/03/01 16:07:13.95 CQbZyxiT.net
>>277
前スレは見てなく、話はうる覚えだが、あっそう。
あ~、「s>t>1」ではなく
「任意のs>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。」
とすればよかったのか。そうすれば>>239-240の手法が通用したな。

295:132人目の素数さん
15/03/01 16:09:51.99 NplpTsbd.net
>>274
どうも。スレ主です。
”おっちゃん”、呼んだか?
>自明な議論は、スレ主宛てだ。スレ主でも分かるように書いた。
自明な議論は不要だよ。2ちゃんねるで分かり易い証明はいらん(そもそも、アスキーベースの板だから数学記号が読みにくい)
検索用キーワードを書いて貰えれば、検索して読む。あるいは、テキスト(本)を示して貰えれば、本を取り寄せるさ
>ハメル基底の議論では、有理直線Qは可算無限集合、R\Qは非可算集合が前提になるが。
スレ主的には、「ハメル基底」など未消化な道具に頼るのは好きじゃ無いね
しかも、「ハメル基底」について調べた範囲では、可算無限と非可算無限との区別までだろ?
>>194の”連続濃度の”べきの濃度””について、なにか言えるのかね?

296:132人目の素数さん
15/03/01 16:14:49.19 CQbZyxiT.net
いや、>>278の「任意のs>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。」では
なく「任意の2>s>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。」か。

297:132人目の素数さん
15/03/01 16:21:05.56 CQbZyxiT.net
>>279
私も本当は自明なことは書く気がしなかった。普段、机に置いたパソコンに向かい、
床に座って左手だけでキーを打っててな、パソコンで書きにくいんだわ。
有理数全体Qは可算で、無理数全体R\Qは非可算は、本当は前提にするべきだよ。

298:132人目の素数さん
15/03/01 16:28:19.08 CQbZyxiT.net
>>279
>スレ主的には、「ハメル基底」など未消化な道具に頼るのは好きじゃ無いね
いや、>>239-240は、
>[第5段]:任意の2>s>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
として読めば、少し訂正が必要だが大体は通用する議論になる。

299:132人目の素数さん
15/03/01 16:41:21.24 NplpTsbd.net
>>279
つづき
>スレ主的には、「ハメル基底」など未消化な道具に頼るのは好きじゃ無いね
これな、ミスリードされたと思うよ、”おっちゃん”が
「ハメル基を使わない積極的理由が無い 使わないのは単なる自己満足」>>260
だが、
「ハメル基を使う積極的理由が無い 使うのは単なる自己満足」という方が正しいと思うよ
>>260って、”マセマでガロア理論って無い? ”>>257って言っている人でしょ?

300:132人目の素数さん
15/03/01 16:48:51.05 WbtuUWlv.net
>>280, 282
>「任意の2>s>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。」か。
それが言えた「だけ」では全く不十分であり、T(x) が非可算無限個あることは言えないよ。
このことは、次のように一般化して考えるとよく見えてくる。
問題:Y は集合とする。写像 F:(0,2)-Q → Y は、
2>s>1>t>0 なる s,t∈R-Q に対して常に F(s)≠F(t) が成り立つとする。
このとき、F(x) (x∈(0,2)-Q) は非可算無限個あると言えるか?
解答:言えない。Y を2元以上の集合として、Y の異なる2元 a, b を1つずつ取り、
x∈(0,2)-Q に対して、 F(x)=a (0<x≦1), b (1<x<2) と置けば、
このFは問題の仮定を満たすが、F(x) (x∈(0,2)-Q) はaとbの2種類しか無い。
非可算無限個どころか、「有限個」である。■
というわけで、>>280のやり方「だけ」では不十分であり、
T(x) が非可算無限個あることは絶対に言えない。
なぜなら、もし >>280 のやり方「だけ」で非可算無限個あることが言えたなら、
その論法は上の問題にも適用できてしまって、F(x) が非可算無限個あることが
言えてしまうが、それは上の解答に矛盾するからだ。

301:132人目の素数さん
15/03/01 16:50:18.60 NplpTsbd.net
>>281
どうも。スレ主です。
”おっちゃん”、か
>私も本当は自明なことは書く気がしなかった。普段、机に置いたパソコンに向かい、
まあ、出題の前スレ498 スレリンク(math板:498番)
「複素平面Cの乗法群C^{×}=C-{0}の正規部分群は非可算無限個存在することを示せ。 」って
”正規”って、おいおいという感じだったわ
それを、またご丁寧に証明して、さらにおいおいだった(この感覚分かりますか?)
まあ、群論初心者丸分かりですねって・・
>有理数全体Qは可算で、無理数全体R\Qは非可算は、本当は前提にするべきだよ。
当然ですよ。カントールがやった対角線論法以外の証明法を知らない。そこらの無限集合論は、予備知識として前提にして良いんだ
(そうしないと泥沼だぜ。だから、ハメルも要らないんだ)

302:132人目の素数さん
15/03/01 16:51:43.25 TS3FUA1w.net
嵌める基を使う方が簡単に証明できるんだからあってるだろ
何言ってるの?

303:132人目の素数さん
15/03/01 17:10:43.74 NplpTsbd.net
>>254 補足
>まあ、圏論もそのうち(いまどき、常識になっている部分が多い感じがするよね。普通に出てくる・・)
例えば、ガロア理論 松本眞 平成18 年11 月22 日 広島大 2.2 profinite 位相>>246 より
「F がK 上のガロア拡大であるときは、
1 → G(L/F) → G(L/K) → G(F/K) → 1 なる短完全列を得る。右の射の全射性は、G(F/K) ≒ HomK(F,Ω) と推移性から従う。」
なんてね、すらっと普通にね
まあ、短完全列なんて、習うより慣れろ、本格的圏論の外だぞ、常識だよと
そういう書き方なんだよね。「圏論でございます」という断り書きなしの時代なんだよね
どこまでが常識か良く分からないが、結構普通に出てくるよね

304:132人目の素数さん
15/03/01 17:12:41.23 NplpTsbd.net
>>286
どうも。スレ主です。
出来ないと思うんだけど
1~3行くらいで、簡単にあらすじ言ってみて

305:132人目の素数さん
15/03/01 17:22:24.14 TS3FUA1w.net
>>288
誤魔化すな
お前が自分の間違いを認めたら書いてやるよ

306:132人目の素数さん
15/03/01 17:53:32.54 NplpTsbd.net
>>289
どうも。スレ主です。
>>出来ないと思うんだけど
>>1~3行くらいで、簡単にあらすじ言ってみて
>誤魔化すな
>お前が自分の間違いを認めたら書いてやるよ
はいはい、おそらく君には書けないと思うので、こちらから書いておく
(スレ主の証明)
1.出題は前スレ498 スレリンク(math板:498番)
「複素平面Cの乗法群C^{×}=C-{0}の正規部分群は非可算無限個存在することを示せ。 」って>>285
2.それで、この問題の前提として、無限集合論は前提知識として既知と考えて良いとする>>295
3.そうすると、問題を簡単化して、複素Z→実数R→1より大の実数の集合{ x|x>1, x∈R } と簡略化して考えれば良い
4.>>242でも書いたように、1より大の一つの実数xを考える。
5.その一つの実数xからなる最小の乗法群Gは、G={ x^n|x>1, x∈R, n∈Z } (Zは整数の集合)と書ける
6.x1<x2 なる実数からなる二つの最小の乗法群 G1とG2を考える。x1∉ G2 だから、G1≠G2となる。(細かい点は分かるだろうから省略)
7.よって、1より大の実数一つから生成される最小の乗法群の集合U'と、1より大の実数とは、一対一対応(全単射)が成り立つ
7.よって、集合U'は、1より大の実数と同じ濃度であり、連続の濃度を持つ
8.U'⊂乗法群C^{×}だから、C^{×}は連続の濃度、即ち非可算無限の濃度を持つ。QED
はい、では”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”>>286だったね
お願いします(おそらく書けないだろうが)

307:132人目の素数さん
15/03/01 18:01:09.56 NplpTsbd.net
>>290 訂正
5.その一つの実数xからなる最小の乗法群Gは、G={ x^n|x>1, x∈R, n∈Z } (Zは整数の集合)と書ける
 ↓
5.その一つの実数xからなる最小の乗法群Gは、G={ x^n|x>1, x∈R, ∀n∈Z } (Zは整数の集合)と書ける
まあ、そのままでも分かると思うが

308:132人目の素数さん
15/03/01 18:15:53.51 TS3FUA1w.net
>>290
G={ x^n|x>1, x∈R, ∀n∈Z } の単位元は何?

309:132人目の素数さん
15/03/01 18:23:42.63 NplpTsbd.net
>>292
n=0

310:132人目の素数さん
15/03/01 18:25:11.53 TS3FUA1w.net
正規部分群の定義すら知らないスレ主でも単位元の定義は知ってたかw

311:132人目の素数さん
15/03/01 18:27:55.58 NplpTsbd.net
はい、では”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”>>286だったね
お願いします(おそらく書けないだろうが)

312:132人目の素数さん
15/03/01 18:27:56.55 08QQ84Zx.net
ぱーちくりんスレ主は
お前の解説も
使た本も
需要ないことにはやく気付けよ
ぱーちくりんの書き込みなぞ読まんのだから

313:132人目の素数さん
15/03/01 18:28:59.95 08QQ84Zx.net
ぱーちくりんスレ主は
お前の解説も
使った本も
需要ないことにはやく気付けよ
ぱーちくりんの書き込みなぞ読まんのだから
と言う理由で
*スレたて
*次のスレ誘導
以外はしなくてよろしい

314:132人目の素数さん
15/03/01 18:30:04.21 08QQ84Zx.net
と言うか
ぱーちくりんスレ主は
*スレたて
*次のスレ誘導
以外はするな

315:132人目の素数さん
15/03/01 18:35:04.41 NplpTsbd.net
>>296
おお、君か!
宿題出来たか? >>153 恥さらしくん
問題は>>80だよ

316:132人目の素数さん
15/03/01 18:36:40.73 NplpTsbd.net
ID:08QQ84Zxくんは、一番レベル低いと認定して上げるよ

317:132人目の素数さん
15/03/01 18:39:10.23 NplpTsbd.net
>>294
>正規部分群の定義すら知らないスレ主でも単位元の定義は知ってたかw
ごまかせたと思っているのだろうか? 質問で君のレベルが分かったよ

318:132人目の素数さん
15/03/01 18:45:59.46 NplpTsbd.net
>>301
「ハメル基底」ね・・、下記wikipediaみたいなことを考えているんだろうが・・
君のレベルでは、「ハメル基底」なんか持ち出したら・・、収拾がつなかなくなると思うのよ・・・
”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”>>286だったね
お願いします(おそらく書けないだろうが)
URLリンク(ja.wikipedia.org)
実数全体 R を有理数体 Q 上のベクトル空間と見たときの代数基底はハメル基底として知られる(文献によってはもっと広く、ベクトル空間の任意の代数基底の意味で「ハメル基底」の�


319:黷pいるものもあるが)。 通約不能な任意の二数は線型独立であることに注意する。 例えば 1 と π などはそうで、これらを含むハメル基底を構成することができる。 さらに R から R への写像 f で f(π) = 0 かつそれ以外の基底ベクトルの上には恒等的に作用するようなものを定め、これを R 全体にまで線型に拡張する。 ここで、π に収斂する任意の有理数列 {rn}n を取れば、limn f(rn) = π だが f(π) = 0 となる。 即ち、作り方から、f は Q-線型(R-線型ではない)となるが、連続でない。 f は可測ですらないことに注意(加法的な実函数が線型となることと可測であることとは同値、ゆえに任意の非線型実函数に対してヴィタリ集合が存在する)。 この f の構成法は選択公理に依っている(ハメル基底の存在を示すのにツォルンの補題が要る)。



320:132人目の素数さん
15/03/01 18:49:29.65 TS3FUA1w.net
>>301
あの質問で私のレベルが分かったと言う君のレスで、君のレベルは分かったよ
まあ正規部分群すらわかってないことは元々分かってたがねw

321:132人目の素数さん
15/03/01 18:50:17.31 NplpTsbd.net
はいはい
”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”>>286だったね
お願いします(おそらく書けないだろうが)

322:132人目の素数さん
15/03/01 18:51:46.22 NplpTsbd.net
>>302も読んでね
「君のレベルでは、「ハメル基底」なんか持ち出したら・・、収拾がつなかなくなると思うのよ・・・ 」
これ当たっているだろ?

323:132人目の素数さん
15/03/01 18:54:24.94 NplpTsbd.net
>>302>>305
訂正
君のレベルでは、「ハメル基底」なんか持ち出したら・・、収拾がつなかなくなると思うのよ・・・

君のレベルでは、「ハメル基底」なんか持ち出したら・・、収拾がつかなくなると思うのよ・・・
追伸
楽しみに待っているよ
予想は、君の逃亡だがね・・

324:132人目の素数さん
15/03/01 18:59:40.08 TS3FUA1w.net
>>304
∀σ∈G に対し σN~Nσ なら NはGの正規部分群
とか言って赤っ恥晒した自称ガロア原論文研究家の釣り針にはかからないよw

325:132人目の素数さん
15/03/01 19:40:41.18 NplpTsbd.net
>>307
はいはい、では君を「ハメル基底」くんと名付けよう
Q.G={ x^n|x>1, x∈R, ∀n∈Z } の単位元は何? >>292
A.n=0 (>>293), 「ごまかせたと思っているのだろうか? 質問で君のレベルが分かったよ 」(>>301)
ここをちょっと附言しておく
1.君は、”一つの実数xからなる最小の乗法群Gは、G={ x^n|x>1, x∈R, n∈Z } (Zは整数の集合)”>>290を、なんか勘違いしていたんだと思う
2.だから、「ハメル基底」が使えると思い込んでいたんだね・・?
3.だが、”一つの実数xからなる最小の乗法群Gは、G={ x^n|x>1, x∈R, n∈Z } (Zは整数の集合)”で、それでさえ、群Gは加算無限個の元から成る
4.スレ主が思うに、「ハメル基底」の使い方は、加算無限濃度のQを使って、実数R及び複素数Zを構成するという流れだろう>>302
5.だが、そうしたところで、具体的な群G={ x^n|x>1, x∈R, n∈Z } (Zは整数の集合)に適用しようとしたときに、非常な困難にぶち当たる
6.なぜなら、群Gの元は、加算無限個(全ての整数と同じだけ)あるから、一つ一つの元を処理し出したら大変になる
7.なので、「ハメル基底」を持ち込むことは、問題を複雑化しただけだ。それに、ようやく君は、>>294かあるいはその後に気付いた
スレ主的には、そう思っての「ごまかせたと思っているのだろうか? 質問で君のレベルが分かったよ 」(>>301)なのだ
はい、では”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”>>286だったね
お願いします(おそらく書けないだろうが)
この推定を覆す素晴らしい証明を期待しています。スレ主より

326:132人目の素数さん
15/03/01 19:46:19.60 TS3FUA1w.net
では君には名誉称号 正規部分群君 を授けよう
これからも大いに住人を笑わせてくれ賜え

327:132人目の素数さん
15/03/01 20:09:42.95 NplpTsbd.net
>>309
はいはい、「ハメル基底」くんの敗北宣言ですね
良く分かりました。逝ってよし!
追伸
笑いを取るのは、「ハメル基底」くんの方が上だね
スレ主も顔負けだよ

328:132人目の素数さん
15/03/01 20:43:54.05 TS3FUA1w.net
ではいきますか

329:132人目の素数さん
15/03/01 20:44:20.00 TS3FUA1w.net
259 :132人目の素数さん:2014/10/19(日) 09:35:59.87
>>258
どうも
スレ主です。
>>255と同一人物と見たので、コメントしておく(ここではIDが出ないので不便だ)
>Hが正規部分群でなくても、σ-1・H・σはHと同型である。
>念のため書いとくとHからσ-1・H・σへの同型写像はh→σ-1・h・σで与えられる。
ここ、なんか勘違いしてないか? σには、何の制約も付かないのか?
大本の群をG、H⊂G, σ∈G として
σには、何の制約も付かないとしたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
自分で気付くまで放置しようと思ったが、うるさいので一言
★★★ 勘違い野郎はお前だよw 気付かなきゃいけないのもお前w ★★★

330:132人目の素数さん
15/03/01 20:44:47.75 TS3FUA1w.net
269 :132人目の素数さん:2014/10/19(日) 11:12:12.88
>>265
どうも
スレ主です。
>>σには、何の制約も付かないとしたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
何の制約も付かないを、∀σという意味で使っている>>259
だから、大本の群をG、H⊂G, ∀σ∈G として
σには、何の制約も付かない(∀σ∈G)としたら、「σ-1・H・σはHと同型」ってまさに正規部分群でしょ?
★★★ 違うがw ★★★
URLリンク(ja.wikipedia.org)
正規部分群(せいきぶぶんぐん、英: normal subgroup)は、群の任意の元による内部自己同型のもとで不変な部分群である。
正規部分群の重要性は、エヴァリスト・ガロアによって最初に明らかにされた。

331:132人目の素数さん
15/03/01 20:45:20.16 TS3FUA1w.net
283 :132人目の素数さん:2014/10/19(日) 11:55:59.33
>>269-272
どうも
スレ主です。
なんか、勘違いしてない?
★★★ だから勘違い野郎はお前だってw 腹いてええええw ★★★
1.「Hが正規部分群でなくても、σ-1・H・σはHと同型である。」>>255 という陳述が、成り立つ条件を教えてくれ
 (無条件で成り立つ場合が、正規部分群だと思うが)
2.ああ、辿ると>>247
 ”さっきも書いたように任意のH、σに対してσ-1・H・σはHと同型なので、
ここから正規部分群の概念に気づく方がおかしい。 ”?
 これ>>244 "○Gの部分群HがGの正規部分群であるとは、任意のGの元σに対しσ-1・H・σがGの部分集合としてもHと同じであるということである。"
 からの継続だったので、Hは正規部分群という前提で考えていた。違うのか?
あと、正規部分群は大本の群Gとの関係があることも注意しておく
>>260"群Gの異なる部分群HとKが同型になることはあり得る。
というか、HがGの正規部分群でなければ必ずそのようなHとKの組は存在する。
例えば、S5の、1→2→3→4→5→1という置換から生成される部分群と、1→3→2→4→5→1という置換から生成される部分群は、
同型ではあるが(どちらも5次巡回群)、S5の部分群としては異なる。"で
言いたいことが不明だが、群GがS5のとき、位数5の巡回群は正規部分群ではない
が、>>166-167の線形置換から成る位数20の群Gでは、正規部分群になるよ

332:132人目の素数さん
15/03/01 20:45:55.43 TS3FUA1w.net
284 :132人目の素数さん:2014/10/19(日) 11:58:15.71
>>283
どうも
スレ主です。
これだけ言って分からないようなら、以降無視(スルー)だな
★★★ これだけ言ってもわかんないのはお前だよw オ・マ・エw ★★★
★★★ 馬鹿のくせに「以降無視(スルー)だな」w 腹が攀じれるwかんべんしてえええw ★★★

333:132人目の素数さん
15/03/01 20:47:58.23 TS3FUA1w.net
          ____
       / \  /\  キリッ
.     / (ー)  (ー)\
    /   ⌒(__人__)⌒ \
    |      |r┬-|    |  これだけ言って分からないようなら、以降無視(スルー)だな
     \     `ー'´   /
    ノ            \
  /´               ヽ
 |    l              \
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、.
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))

          ____
        /_ノ  ヽ、_\
 ミ ミ ミ �


334:@o゚((●)) ((●))゚o      ミ ミ ミ   だっておwwwwwwwwww /⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\   /⌒)⌒)⌒) | / / /     |r┬-|    | (⌒)/ / / // | :::::::::::(⌒)    | |  |   /  ゝ  :::::::::::/ |     ノ     | |  |   \  /  )  / ヽ    /     `ー'´      ヽ /    /  |    |   l||l 从人 l||l      l||l 从人 l||l  ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、   ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))



335:132人目の素数さん
15/03/01 20:50:46.89 TS3FUA1w.net
正規部分群君には大いに笑わせてもらった。感謝感謝。

336:132人目の素数さん
15/03/01 21:09:45.26 TS3FUA1w.net
引き続き「二項演算の定式化」の巻をお楽しみください

337:132人目の素数さん
15/03/01 21:10:18.81 TS3FUA1w.net
668 :132人目の素数さん:2014/12/07(日) 14:21:33.41
ご苦労。スレ主である
>>665
特別のニュアンスまだ~? ?
さすがに、ネコには理解できないよな
特別のニュアンスが理解できるようになるには、「入る」という言葉がよく使われている科目
例えば、位相(topology)>>632、微分トポロジー>>615、望月理論>>601、複素構造>>606 を勉強すれば自然に分かる
素養のない君には無理だよ。2chのネコAAがお似合いの君にはね
>>663
>要素が60個の集合 A 上の演算 f:A×A→A を、A5の群表で定義すればよいだけ
>だね
その通りだ。が、圏論ではないけれども、アブストラクトナンセンスの典型だな
URLリンク(ja.wikipedia.org)
★★★ おいおいwオマエは ★★★ 
★★★ >圏論は、前から興味があってね、過去なんども取り上げているが、ほんの一部しかわからん(それもあやしいかも) ★★★ 
★★★ じゃねーのかよw ハッタリかましてたのバレバレだよ君w これは恥ずかしいw ★★★ 
なお、単なる積に、”×”を使うな。初学者まるだしだぜ
★★★ は?単なる積?何それ? 集合×集合 と書けば直積に決まってんだろ ★★★
★★★ 初学者まるだしはどう見てもお前だよw オ・マ・エw ★★★
大学から上では、”×”は直積あるいはクロス積(外積)用にとっておくんだよ
URLリンク(ja.wikipedia.org) 直積
URLリンク(ja.wikipedia.org) クロス積(外積)

338:132人目の素数さん
15/03/01 21:11:06.11 TS3FUA1w.net
685 :132人目の素数さん:2014/12/07(日) 21:31:34.78
>>669-682
ご苦労。スレ主である
バカが、一人で何役も書き分けているんだろうな。こんなに何人もバカがいたら、日本も終わりだろう
★★★ バカはお前だよw オ・マ・エw ★★★
さすがに、普通の人は気付くよね、よほどでない限り・・
★★★ 可哀相に、あまりにフルボッコされ過ぎて被害妄想炸裂させてるw ★★★
で、本題は
>>673
>これは恥ずかしい。
>「f:A×A→A」のA×Aはまさに集合の直積なんだが
・へーえ、「要素が60個の集合 A 上の演算 f:A×A→A を・・定義すれば」って書いてたでしょ? その方が正解に近かったのにね
・言い訳で、さらに墓穴かよ、おい!
・A×Aを、集合の直積としましょうか。じゃ、直積A×Aの要素はいくつになるんだ、ぼうや? 小学校のかけ算から勉強し直しだな
・で、直積A×Aの増えた要素の集合からAへの写像か? 全射になるが、どうやってA5の群表で定義する? 具体的に構成できるのか、おまえに?
・もともとの陳述は、”あなたが言ってることは「要素が60個の集合には5次交代群と同型の群構造が入る」というトリビアルな話である。 ”だった
・それと、直積A×Aの集合からAへの写像とどういう関係があるのか述べよ。趣旨が変わっているだろうよ。誤魔化すなよおい。墓穴だよ
まさか・・、直積A×Aの要素が60と勘違いしてんじゃないだろうな?
言い訳を、書けば書くほど、墓穴かな。おまえ 一句できた!
★★★ もう笑いが止まらねええw 勘弁してえええええw ★★★

339:132人目の素数さん
15/03/01 21:11:43.42 TS3FUA1w.net
          ____
       / \  /\  キリッ
.     / (ー)  (ー)\
    /   ⌒(__人__)⌒ \  まさか・・、直積A×Aの要素が60と勘違いしてんじゃないだろうな?
    |      |r┬-|    |
     \     `ー'´   /
    ノ            \
  /´               ヽ
 |    l              \
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、.
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))

          ____
        /_ノ  ヽ、_\
 ミ ミ ミ  o゚((●)) ((●))゚o      ミ ミ ミ   だっておwwwwwwwwww
/⌒)⌒)⌒. ::::::⌒(__人__)⌒:::\   /⌒)⌒)⌒)
| / / /     |r┬-|    | (⌒)/ / / //
| :::::::::::(⌒)    | |  |   /  ゝ  :::::::::::/
|     ノ     | |  |   \  /  )  /
ヽ    /     `ー'´      ヽ /    /
 |    |   l||l 从人 l||l      l||l 从人 l||l
 ヽ    -一''''''"~~``'ー--、   -一'''''''ー-、
  ヽ ____(⌒)(⌒)⌒) )  (⌒_(⌒)⌒)⌒))

340:132人目の素数さん
15/03/01 21:13:20.21 TS3FUA1w.net
以上、正規部分群君の爆笑劇場でした
お楽しみいただけたでしょうか?

341:132人目の素数さん
15/03/01 21:20:30.08 TS3FUA1w.net
正規部分群の特徴
・普通に数学勉強した人なら当たり前のことが全然わかってない
・間違いを指摘されると、まず自分ではなく相手を疑う
・わかりやすく説明しても聞く耳持たず、あくまで自分が正しいとの迷路から抜け出せない
・間違い指摘者を敵と看做し罵倒する、そして上から目線はぶれない

342:132人目の素数さん
15/03/01 21:25:36.70 TS3FUA1w.net
このような人種は、例のコピペ癖と併せ、数学には最も不向きである
よって三年間も費やしても、上記のような爆笑劇場を繰り広げる始末
普通の人なら恥ずかしくて二度と戻ってこれないが、それでも彼の上から目線はぶれることは無い
何故なら上から目線こそが彼が数学をやる唯一絶対の目的だからだ

343:132人目の素数さん
15/03/01 21:32:26.97 TS3FUA1w.net
正規部分群君ごめんね
皆に笑いをと思って
これに懲りずにまた住人を楽しませてね
まあ懲りずに上から目線は変わらないだろうけどさwww

344:132人目の素数さん
15/03/01 22:49:13.00 zCI/9+YQ.net
>2014/10/19(日)
2年10ヶ月、自分より分かってそうなレスには「君の来るところではない」
と追い返し、分かってなそうなレスには、コピペの山でうんざりさせ、
ごまかしてきたスレ主の地位が崩壊した記念日だったなw

スレ主には才能がある、、、詐欺師のなww

345:132人目の素数さん
15/03/01 23:03:31.72 NplpTsbd.net
>>312-325
どうも。スレ主です。
ID:TS3FUA1wくんか、連投ありがとう
よほど悔しかったんだね。君の悔しさが表れていて、微笑ましいよ
上から目線は君だったんだね。見下していたスレ主に完敗宣言ね。それしか言えないと。数学で完敗しましたと
はいはい、「ハメル基底」なんて、自分が理解していないことを持ち出したのが敗因ですね
実数の乗法群の構造も、分かっていなかったんだ。G={ x^n|x>1, x∈R, ∀n∈Z } の単位元は何? >>292ってね

346:132人目の素数さん
15/03/01 23:26:36.08 TS3FUA1w.net
>>327
あの赤っ恥爆笑劇場をサラっと他人事のようにスルーする君は、>>326で指摘されてる通り、
詐欺師の才能があるね、普通の感覚を持った人なら決して立ち直れないと思うよ

347:132人目の素数さん
15/03/01 23:34:08.70 qh9gVd7G.net
>>328
正規部分群の定義の分からないスレ主が、代数専攻で卒業出来た数学科のある大学ってww
どこだろ?

348:132人目の素数さん
15/03/01 23:35:51.39 TS3FUA1w.net
ただ知らないとか間違えたとかなら普通だよ、人間は最初は何も知らないわけだし
間違いもよく犯す。
だけど君の場合は、正しく指摘してる人を罵倒し、ガンとして譲らない頑固さを持っている。
それでいて、間違いと気付いた後でも上から目線を貫くタフなメンタリティも併せ持っている。
これ以上滑稽は人物にはなかなかお目にかかれないからね。

349:132人目の素数さん
15/03/01 23:39:52.77 qh9gVd7G.net
リアルのスレ主はザビエル禿のジジイなんだろうな

350:132人目の素数さん
15/03/01 23:44:36.23 NplpTsbd.net
>>327
どうも。スレ主です。
もう少し、数学的解説をしておくと
1.「R の Q 上の基底はハメル基底と呼ばれ、非可算無限の濃度を持つ。」(下記


351:URL)を認めたとして、しかし、”非可算無限の濃度を持つ”のところは、対角線論法を使っているはず http://fascinationworld.web.fc2.com/bekutorukukan.htm Fascination N-D-File ベクトル空間 (抜粋) 様々なベクトル空間 一般に体の拡大 L/K が与えられたとき、拡大体 L はその加法と部分体 K の元の(L における)積をスカラー乗法として K 上のベクトル空間になる。 たとえば R は部分体として有理数体 Q を含むから、Q 上のベクトル空間である。 R の Q 上の基底はハメル基底と呼ばれ、非可算無限の濃度を持つ。 2.だったら、そもそも対角線論法を認めて、「R が非可算無限の濃度を持つ」というカントールの定理を認めてもほとんど同じだろうよ 3.もし、違いがあるとすれば、解くべき問題の構造から、「R が非可算無限の濃度を持つ」より「Q 上のハメル基底は、非可算無限の濃度を持つ」の方が使い易いとき 4.ならば、今回の解くべき問題の構造がどうなっているのか? 複素数あるいは実数の成す乗法群の集合の構造を考察することなくして、どちらが使い易いということが決まるべき 5.”嵌める基を使う方が簡単に証明できるんだからあってるだろ ”>>286だったね 6.で、ちょっと突っ込み入れたら、逃げまくったあげく、ハメル基底も分かってないし、乗法群も分かってないことがばれたと・・ 「ハメル基底」くんのおおぼけかましの芸は、一流だよ が、腹いせにアラシは、人間としてどうなんかね? 正直こどもだね・・。早くおとなになりなさいよ



352:132人目の素数さん
15/03/01 23:48:31.10 NplpTsbd.net
>>332
訂正
複素数あるいは実数の成す乗法群の集合の構造を考察することなくして、どちらが使い易いということが決まるべき
 ↓
複素数あるいは実数の成す乗法群の集合の構造を考察して、どちらが使い易いということが決まるべき
(まあ、基本中の基本だろう)

353:132人目の素数さん
15/03/02 00:17:34.03 /CImvwKh.net
>R の Q 上の基底はハメル基底と呼ばれ、非可算無限の濃度を持つ。
スレ主はその理由はわかってるの?
またいつものようにわかってないのにコピペだけしてるの?

354:132人目の素数さん
15/03/02 00:27:55.67 d/R6BEmu.net
>>334
スレ主に理由が分かるわけないだろw
知ったかの材料を仕入れただけ
理解できる、証明できるフリをして威張るね

355:132人目の素数さん
15/03/02 00:42:35.07 /CImvwKh.net
そうだね
圏論一つ取っても、さも分かってる風な言い方してたのに、レベルがバレそうになった途端慌てて
>圏論は、前から興味があってね、過去なんども取り上げているが、ほんの一部しかわからん(それもあやしいかも)
と予防線張っちゃったし

356:132人目の素数さん
15/03/02 19:22:16.36 W+oQWcvb.net
>>329
代数専攻云々はコピペだよ

357:132人目の素数さん
15/03/02 22:28:21.38 /CImvwKh.net
さすがにあそこまで酷いとどんな大学でも無理でしょw

358:132人目の素数さん
15/03/03 08:01:29.59 SDV97v2D.net
>>279
>>239-240の訂正のまとめ。
(1)、[第5段]:任意の「1>s>t>0なるs、t∈R\Q」に対してT(s)≠T(t)であることを示す。
(2)、>矛盾に導くため、或る異なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
  の部分の「或る異なるs、t∈R\Qが存在して」は「或る1>s>t>0なるs、t∈R\Qが存在して」の間違い。
(3)、Case2の「e^{i(2s+k/n)π)}≠1であって矛盾。」は、
  「e^{i((1+m/n)s+k/n)π)}≠1であって矛盾。」の間違い(>>243と同じ)。
(4)、>Case1、2から、異なるs、t∈R\Qが存在して、T(s)=T(t)とすると、矛盾が生じる。
  の部分の「異なるs、t∈R\Qが存在して」は「1>s>t>0なるs、t∈R\Qが存在して」の間違い。
以上、(1)~(4)のように訂正。

359:132人目の素数さん
15/03/03 08:04:55.57 ecIpM61Y.net
この程度の問題解くのに、一体何回訂正してるんだ…

360:132人目の素数さん
15/03/03 08:13:39.95 SDV97v2D.net
>>340
まあ、これで例の通り、ハメル基底を使わずに示せたろう。

361:132人目の素数さん
15/03/03 08:26:12.00 SDV97v2D.net
昨日訂正内容を書こうとしても書けなかったんだが、一体何だったんだろ?
まあ、何か単純に考えてよかったみたい。変なこと考えてた。

362:132人目の素数さん
15/03/03 08:37:25.23 SDV97v2D.net
>>340
>239-240の手法は、少し訂正すると本当は
(1)、任意の「1>s>t>0なるs、t∈R\Q」に対してT(s)∩T(t)=φであること、
(2)、任意の「2>s>1>t>0なるs、t∈R\Q」に対してT(s)∩T(t)=φであること、
とかも同様に示せるようになっている。

363:132人目の素数さん
15/03/03 08:45:32.78 SDV97v2D.net
コピペしたら付いちゃったwが、>343で「」はいらなかったな。
まあ、いいや。

364:132人目の素数さん
15/03/03 08:51:13.68 SDV97v2D.net
>>343ではT(s)∩T(t)={1}だった。

365:132人目の素数さん
15/03/03 09:13:19.41 SDV97v2D.net
>>340
間違えて悪い。>>239-240の手法は、>>343つまり、
>(1)、任意の「1>s>t>0なるs、t∈R\Q」に対してT(s)∩T(t)={1}であること、
>(2)、任意の「2>s>1>t>0なるs、t∈R\Q」に対してT(s)∩T(t)={1}であること、
とかまでは通用しなかった。少し他の条件が必要になって来る。
ということで、>343は取り下げ。

366:132人目の素数さん
15/03/03 09:46:55.17 igu3dVOk.net
>>346
>[第5段]:任意の「1>s>t>0なるs、t∈R\Q」に対してT(s)≠T(t)
は正しくて、証明も簡単に済むのだが、
お前の>>239-240のやり方では証明にならない(読み替えても)。
具体的には
>e^{i(sπ)はm_1=1のときのT(s)の点、e^{i(((m/n)s-k/n)π)}はm_1=1のときのT(t)の点
>であるから、e^{i(sπ)=e^{i(((m/n)s-k/n)π)}…③ または e^{i(sπ)=e^{-i(((m/n)s-k/n)π)}…④
>のどちらか片方かつその一方に限り成り立つ。
この手の議論が完全に間違っている。T(s)における m_1=1 のときの元と、
T(t)における m_1=1 のときの元は対応している必要が無いので、③とか④とかに限定できない。
お前がこの議論で やっているのは、
「 2つの集合 A={ 2*m_1|m_1∈Z ] と B={ 2*m_1+20|m_1∈Z } について、
  m_1=1のときの A の元は 2 であり、Bの元は 22 だから、一致しておらず、A≠B である」
といった感じの、支離滅裂な議論なのだ(実際には A=B である)。これじゃ証明にならない。

367:132人目の素数さん
15/03/03 14:30:43.23 xqVFfdmW.net
頭が悪いってのはどうしようも無いなぁ
もう諦めろとしか

368:132人目の素数さん
15/03/03 22:00:10.90 iO539jnI.net
>>348
大学の講義って、聞いてほんと有り難いと思ったのは4年間で5つくらい
しかないんだが、このスレ見ると「大学に行って、ちゃんと勉強する」と
いうのは意味があるんだな、と実感するなw
ネットで検索して独学ってのは、たいてい無理なんだろう

369:132人目の素数さん
15/03/04 15:54:17.29 +ZGYKspj.net
>>279
>347の通り、よく見たら間違っていた(細かくは確認していなかったw)w
と、いう訳で、>>239-240は次のように訂正。
[第5段]:任意の1>s>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
確かに任意のθ∈R\Qに対して群T(θ)は定まる。
矛盾に導くため、或る1>s>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
すると、T(s)、T(t)は両方共に複素平面Cの単位円周上の部分集合だから、
或る(m,n)∈(Z\{0})^2が存在して、e^{i(msπ)}=e^{i(ntπ)}であり、
e^{i(ms-nt)π}=1…①。よって、偏角の不定性に注意して
両辺に主値を取れば、ms-nt≡0(mod2)。
Case1):ms-nt≠0のとき。このとき、或るk∈Z\{0}が存在して、
ms-nt=2k…②であって、n∈Z\{0}からn≠0だから、t=(m/n)s-2k/n。
よって、T(s)=T(t)から、T(s)=T((m/n)s-2k/n)。
ここで、s∈R\Qから、任意のr∈Qについて、{r,s}は体Q上線型独立である。
また、群T(s)=T((m/n)s-2k/n)は、={e^{im_1・((m/n)s-2k/n)π}∈C|m_1∈Z}と表わされる。

370:132人目の素数さん
15/03/04 15:57:52.44 +ZGYKspj.net
>>279
(>>350のCase1の続き)
今、j∈Z\{0}を任意に固定する。すると、j、n∈Z\{0}からjn∈Z\{0}だから、
jnに対して或るa_j∈Z\{0}が存在して、e^{i(jnsπ)}=e^{ia_j・((m/n)s-2k/n)π}
から、e^{i(jn^2・sπ)}=e^{ia_j・(ms-2k)π}=e^{i(a_j・msπ)}…③。
ここで、x_j=e^{i(jn^2・sπ)}、y_j=e^{i(a_j・msπ)}
とおくと、③から、x_j=y_j。従って、偏角の不定性に注意して
x_jとy_jに主値を取れば、或るb∈Zが存在して、
i(jn^2・sπ)=i(a_j・msπ)+i(2bπ)、両辺を整理してまとめれば、(jn^2-a_j・m)s=2b。
m∈Z\{0}に注意すると、jn^2-a_j・m、2b∈Z⊂Qから、jn^2-a_j・m、2b∈Qだから、
jn^2-a_j・m=0から、a_j・m=jn^2�


371:Bよって、m≠0からa_j=jn^2/m。 Z\{0}の点jは任意だから、jをZ\{0}の上で走らせて考えると、 任意のj∈Z\{0}に対して或るa_j∈Z\{0}が定まって、a_j=jn^2/m。



372:132人目の素数さん
15/03/04 15:59:37.56 +ZGYKspj.net
>>279
(>>350-351のCase1の続き)
従って、n^2≡0(mod m)から、m|n^2。
単項イデアルについて、(n^2)=(n)(n)⊂(n)だから、n≡0(mod m)。
従って、nに対して或るc∈Z\{0}が存在して、n=cm。
ns-mt≠0だから、cms-mt≠0から、cs-t≠0。
故にc∈Qに注意すると、cs、t∈R\Q。ここで、T(cs)⊂T(s)=T(t)
だから、csに対して或るj∈Z\{0}が存在してe^{i(csπ)}=e^{i(jtπ)}、
よって、偏角の不定性に注意して両辺に主値を取って考えれば、e^{i(cnsπ)}=e^{i(jntπ)}。
一方偏角の不定性に注意して①の両辺に主値を取って考えれば、e^{i(jms-jnt)π}=1、
つまり、e^{i(jmsπ)}=e^{i(jntπ)}。故に、e^{i(cnsπ)}=e^{i(jmsπ)}。
よって、偏角の範囲を(-π,π]として両辺に主値を取れば、i(cn-jm)sπ=0、
つまりcn-jm=0から、cn=jmであって、cmn=jm^2。ここで、nにcmを代入すれば、
c^2m^2=jm^2だから、j=c^2≧1。また、cmをnで置換すれば、n^2=jm^2。
従って、n^2≧m^2。一方、1∈Z\{0}だから、1に対して或るa_1∈Z\{0}が定まって、
a_1=n^2/m。故に、n^2=a_1・m≧m^2、つまり|a_1|・|m|≧|m|^2だから、
|m|>0から|a_1|≧|m|。n^2≧m^2から、|n|^2≧|m|^2だから、|m|、|n|>0から
|n|≧|m|。a_1=n^2/mから、|n|^2=|a_1|・|m|…④だから、|n|、|a_1|≧|m|から
|a_1|≧|n|≧|m|。ここで、④から|n|^2/(|a_1|・|m|)=1。故に、
|a_1|>|n|>|m| または |a_1|=|n|=|m|。

373:132人目の素数さん
15/03/04 16:01:58.16 +ZGYKspj.net
>>279
(>>350-352のCase1の続き)
Case1-1):|a_1|>|n|>|m|のとき。n=cmつまり|n|=|c|・|m|だから、|n|>|m|から|n|<|c|。
また、n≡0(mod m)から、|n|≡0(mod |m|)。よって④つまり(|a_1|・|m|)/|n|^2=1に注意すると、
|a_1|≡0(mod |n|)であって、|a_1|=|c|・|m|となり、|a_1|=|n|となって矛盾。
Case1-2):|a_1|=|n|=|m|のとき。n=cmつまり|n|=|c|・|m|から|c|=1。故にc=±1。
Case1-2-1):c=1のとき。このときn=mだから、②から、m(s-t)=2kであって、
s-t=2k/mからs=t+2k/m。よって、群T(s)=T(t+2k/m)について、T(t+2k/m)=T(t)。
故に、任意のp∈Z\{0}に対して或るd∈Z\{0}が一意に存在して、
T(t)∋e^{i(dtπ)}=e^{i(p(t+2k/m)π)}∈T(t+2k/m)。
逆に、任意のd∈Z\{0}に対して或るp∈Z\{0}が一意に存在して、
T(t)∋e^{i(ptπ)}=e^{i(d(t+2k/m)π)}∈T(t+2k/m)。
従って、T(t+2k/m)からT(t)への全単射が存在する。即ち、T(s)からT(t)への全単射が存在する。
故に、偏角の範囲を(-π,π]として①の両辺に主値を取れば、i(ms-nt)π=0から、
ms-nt=0。n=mだから、s-t=0からs=tとなって、これはs>tに反し矛盾。
Case1-2-2):c=-1のとき。このときn=-mだから、②から、m(s+t)=2kであって、
s+t=2k/mからs=-t+2k/m。よって、群T(s)=T(-t+2k/m)について、T(-t+2k/m)=T(t)。
故に、任意のp∈Z\{0}に対して或るd∈Z\{0}が一意に存在して、
T(t)∋e^{i(dtπ)}=e^{i(p(-t+2k/m)π)}∈T(-t+2k/m)。
逆に、任意のd∈Z\{0}に対して或るp∈Z\{0}が一意に存在して、
T(t)∋e^{i(ptπ)}=e^{i(d(-t+2k/m)π)}∈T(-t+2k/m)。
従って、T(-t+2k/m)からT(t)への全単射が存在する。即ち、T(s)からT(t)への全単射が存在する。
故に、Case1-2-1と同様にして①の両辺に主値を取れば、i(ms-nt)π=0から、
ms-nt=0。n=-mだから、s+t=0であるが、これはs>t>0からs+t>0であることに反し矛盾。
Case1-2-1、Case1-2-2から、|a_1|=|n|=|m|のとき矛盾。  (Case1-2 終)
Case1-1、Case1-2から、ms-nt≠0のとき矛盾が生じる。   (Case1 終)

374:132人目の素数さん
15/03/04 16:07:26.93 +ZGYKspj.net
>>279
(>>353の続きで、>>350参照)
Case2):ms-nt=0のとき。このとき、ms=ntからs=(n/m)tだから、T(s)=T(t)からT(t)=T((n/m)t)。
また、群T((m/n)t)は、={e^{im_1・(m/n)tπ}∈C|m_1∈Z}と表わされる。
よって、任意のj∈Z\{0}に対して或るa_j∈Z\{0}が存在して、
e^{i(jπ)}=e^{ia_j・(m/n)tπ}。よって、偏角の不定性に注意して
両辺に主値を取れば、或るb∈Z\{0}が存在して、i(jπ)=ia_j・(m/n)tπ+i(2bπ)から、
j=a_j・(m/n)t+2b、つまり、a_j・(m/n)t=-2b+j。
ここで、a_j・(m/n)、-2b+j∈Qであって、t∈R\Q。
従って、a_j・(m/n)=0から、a_j=0またはm=0。
然るに、これはa_j≠0、m≠0であることに反し矛盾。   (Case2終)
Case1、Case2から、1>s>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとすると矛盾。
まあ、もう疲れて来たからちょっと寝る。

375:132人目の素数さん
15/03/04 16:39:24.97 +ZGYKspj.net
>>279
>>353のCase1-1)は間違っていたから、後で訂正する。
今は疲れて出来ん。

376:132人目の素数さん
15/03/04 18:38:01.58 Xbvtg9lr.net
後藤さん張り切ってるね

377:132人目の素数さん
15/03/04 20:12:02.00 YdJRWdwI.net
>>350-354
難しく考えすぎ。そこまでT(s),T(t)を弄っていて正解に辿り着かないのはセンスなさすぎ。
Case1-1どころか、Case1の途中で既に間違ってる。実はCase2も間違ってる。まずはCase1から。
>従って、n^2≡0(mod m)から、m|n^2。
>単項イデアルについて、(n^2)=(n)(n)⊂(n)だから、n≡0(mod m)。
n=2, m=4 と置くと、n^2≡0(mod m)は成り立つがn≡0(mod m)は成り立たない。
その他にも、成り立たない(n, m)の例はたくさんある。
なーにが単項イデアルだよ。算


378:数も出来てないじゃないか。 あと、仮に n≡0(mod m) だったとしても、その後が間違ってて話にならない↓ >つまり、e^{i(jmsπ)}=e^{i(jntπ)}。故に、e^{i(cnsπ)}=e^{i(jmsπ)}。 >よって、偏角の範囲を(-π,π]として両辺に主値を取れば、i(cn-jm)sπ=0、 >つまりcn-jm=0から、cn=jmであって、cmn=jm^2。ここで、nにcmを代入すれば、 ここが間違い。偏角の範囲を限定したところで、cn-jm=0 は出てこない。 結局は cn-jm≡0(mod 2) までしか言えない。 整数a,bがe^{iaπ}=e^{ibπ}を満たすとき、偏角の範囲を(-π,π]として両辺の主値を取ろうとしても、 偏角の範囲を限定したがゆえに、まずaπ, bπが(-π,π]の範囲に収まっていなければならない。 ただ1つの整数kに対して (a+2k)π∈(-π,π] が成り立つようにできて、 ただ1つの整数Lに対して (b+2L)π∈(-π,π] が成り立つようにできる。 これと e^{iaπ}=e^{i(a+2k)π}, e^{ibπ}=e^{i(b+2L)π} から、 e^{i(a+2k)π}=e^{i(b+2L)π} となる。 ここまで来れば、偏角の範囲が(-π,π]に収まっているから、i(a+2k)π=i(b+2L)πとなり、 よってa-b=2(L-k) となる。従って、a-b=0 なんて式は導出できなくて、 結局は a-b≡0(mod 2) までしか言えない。



379:132人目の素数さん
15/03/04 20:32:29.14 YdJRWdwI.net
次はCase2について。
>また、群T((m/n)t)は、={e^{im_1・(m/n)tπ}∈C|m_1∈Z}と表わされる。
>よって、任意のj∈Z\{0}に対して或るa_j∈Z\{0}が存在して、
>e^{i(jπ)}=e^{ia_j・(m/n)tπ}。よって、偏角の不定性に注意して
e^{i(jπ)}って何だよ。s, t はどこに行ったんだよ。
文脈から察するに、e^{i(jtπ)} の間違いだろ。
で、e^{i(jtπ)}だとして計算を続けると、a_j=0なんて出てこない。
最後にもう1つ。
>Case1、Case2から、1>s>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとすると矛盾。
Case1, Case2 の議論では、s, t が 1>s>t>0 を満たすという性質を使っていない。
唯一、Case1-2-1, Case1-2-2 では s>t>0 という性質が使われている。
しかし、1>s>t という性質はどこにも使われていないのだ。
従って、もし Case1, Case2 の議論が正しいなら、
「 s>t>0 なる任意の s, t∈R-Q に対して T(s)≠T(t) が成り立つ 」
ことが言えてしまうことになる。
だが、これには反例があるのだった(s=√2+2, t=√2 など)。
というわけで、この考察だけでも、
「 Case1, Case2 はどこかの議論が間違っている」
ということが分かってしまう。
息をするように間違えまくる大バカ野郎。
1回や2回の間違いではない。
ここまで来るのに延々と間違いを繰り返しているのだ。
話にならん。

380:132人目の素数さん
15/03/05 00:18:11.22 UP7LXXHW.net
もう少し自己査読してから出せばいいのに

381:132人目の素数さん
15/03/05 04:44:17.26 fgPXpUAC.net
>>359
私(>>239-240の訂正をしている者)自身、自己査読していないことは自覚している。
間違いまくっているのも当然。間違いをリサイクルすることも重要
(例えば、>>353のCase1-1の考え方は、m、n∈Z\{0}がm^2≡0 (mod n)を満たすとき
nに対して或るk∈N\{0}が存在してn=±k^2となることの証明に使える)。
まあ、よく自己査読してから書き込むことにする
(ただ、打ち間違いがあるかも知れないことは、前提)。

382:132人目の素数さん
15/03/06 07:57:19.72 AVlvxq7S.net
>>360
>(例えば、>>353のCase1-1の考え方は、m、n∈Z\{0}がm^2≡0 (mod n)を満たすとき
>nに対して或るk∈N\{0}が存在してn=±k^2となることの証明に使える)。
何を言ってるかよく分からないのだが、m、n∈Z\{0}がm^2≡0 (mod n)を満たしていても、
n=±k^2が成り立つとは必ずしも限らない。たとえば、nが素数の場合を考えればよい。
n=3, m=3 とか。このとき、m^2≡0 (mod n)が成り立つのに、n=±k^2を満たすkは存在しない。
Case1-1の間違いはリサイクルすら不可能ってこと。

383:132人目の素数さん
15/03/06 10:49:46.23 T1FPcLyt.net
>>279
今まで、本当に恥ずかしい位に肝心なことを見落としていたわ。>>239-240は次のように訂正。
[第5段]:任意の|s|>|t|かつ-1<s<0<t<1なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
確かに任意のθ∈R\Qに対して群T(θ)は定まる。
矛盾に導くため、或る|s|>|t|かつ-1<s<0<t<1なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
R\Qの部分集合A、Bを、A={a∈R\Q|a∈(-1,0)}、B={b∈R\Q|b∈(0,1)}
と定義する。すると確かにAとBの各R\Qにおける包含関係について、φ≠A、B⊂R\Q である。
ここで、任意の(a,b)∈A×Bに対して-1<a<0<b<1であるから、
任意のa∈Aに対してBの点b=|a|は一意に定まる。また、同様に、
任意のb∈Bに対してAの点a=-bは一意に定まる。よって、AからBへの全単射が存在する。
無理数s、tに対して2つの群T(s)、T(t)が定義される。T(s)のT(t)への左作用を
f:T(s)×T(t)→T(t)とする。g=e^{isπ}とおく。すると、g


384:∈T(s)であるから、 mをZの変数とすれば、定義から任意のe^{i(mt)π}∈T(t)に対して f(g,e^{i(mt)π})=(g,e^{i(mt)π})→g・e^{i(mt)π}∈T(t) が一意に定まる。 つまり、f(g,T(t)):{g}×T(t)→T(t)は全単射である。よって、m=1とすれば、 f(g,e^{itπ})=(g,e^{itπ})→g・e^{itπ}∈T(t) が一意に定まる。 ここで、-1<s<0<t<1であるから、複素平面Cの実軸に関する対称性から g・e^{itπ}=1。また、g=e^{isπ}だったから、g・e^{itπ}を計算すると g・e^{itπ}=e^{i(t+s)π}。従って、e^{i(t+s)π}=1であり、 偏角の範囲を(-π,π]として両辺に主値を取れば、i(t+s)π=0となり、 i≠0<πからt+s=0であり、|s|=|t|が得られるが、s、tが満たす条件|s|>|t|に反する。



385:132人目の素数さん
15/03/06 10:56:55.10 T1FPcLyt.net
>>279
(>>362の続き)
[第6段]:任意の1>s>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
矛盾に導くため、或る1>s>t>0なるs、t∈R\Qが存在してT(s)=T(t)であったとする。
sについて、1>s>0から-1<-s<0であり、2つの群T(-s)、T(t)が定義される。
T(-s)のT(t)への左作用をf:T(-s)×T(t)→T(t)とする。g=e^{i(-s)π}とおく。
すると、g∈T(-s)であるから、mをZの変数とすれば、定義から任意のe^{i(mt)π}∈T(t)に対して
f(g,e^{i(mt)π})=(g,e^{i(mt)π})→g・e^{i(mt)π}∈T(t) が一意に定まる。
つまり、f(g,T(t)):{g}×T(t)→T(t)は全単射である。よって、m=1とすれば、
f(g,e^{itπ})=(g,e^{itπ})→g・e^{itπ}∈T(t) が一意に定まる。
ここで、1>s>t>0から-1<-s<0<t<1であるから、複素平面Cの実軸に関する対称性から
g・e^{itπ}=1。また、g=e^{i(-s)π}だったから、g・e^{itπ}を計算すると
g・e^{itπ}=e^{i(t-s)π}。従って、e^{i(t-s)π}=1であり、
偏角の範囲を(-π,π]として両辺に主値を取れば、i(t-s)π=0となり、
i≠0<πからt-s=0が得られ、s=tはs、tが満たす条件s>tに反する。
[第7段];乗法群C^{×}の正規部分群は非可算個存在することを示す。
集合Aは非可算であるから、乗法群C^{×}の正規部分群は非可算個存在する。

386:132人目の素数さん
15/03/06 10:59:38.57 AVlvxq7S.net
>>362
>[第5段]:任意の|s|>|t|かつ-1<s<0<t<1なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
お話にならない。その[第5段]には何の価値も無い。
なぜなら、それが示せた「だけ」では、T(x) が非可算無限個あることは示せなからだ。
s<0<t のように、sとtの間に実数が挟まれていると価値が無くなってしまうのだ。
>>284にも書いたことだが、ここでもう一度書いておく。
次のように一般化して考えるとよく見えてくる。
問題:Y は集合とする。写像 F:(-1, 1)-Q → Y は、
|s|>|t|かつ-1<s<0<t<1 なる s,t∈R-Q に対して常に F(s)≠F(t) が成り立つとする。
このとき、F(x) (x∈(-1,1)-Q) は非可算無限個あると言えるか?
解答:言えない。Y を2元以上の集合として、Y の異なる2元 a, b を1つずつ取る。
x∈(-1, 1)-Q に対して、 F(x)=a (-1<x≦0), b (0<x<1) と置けば、
このFは問題の仮定を満たすが、F(x) (x∈(-1, 1)-Q) はaとbの2種類しか無い。
非可算無限個どころか、「有限個」である。■
というわけで、上記の[第5段]には何の価値もなく、[第5段]だけでは全く不十分であり、
T(x) が非可算無限個あることは絶対に言えない。
なぜなら、それだけで非可算無限個あることが言えたなら、
その論法は上の問題にも適用できてしまって、F(x) が非可算無限個あることが
言えてしまうが、それは上の解答に矛盾するからだ。

387:132人目の素数さん
15/03/06 11:01:41.77 AVlvxq7S.net
>>363
おっと、[第6段]が増設されたのか。
これは早とちりをしてしまった。申し訳ない。

388:132人目の素数さん
15/03/06 11:02:51.45 T1FPcLyt.net
>>279
一体、私は何を考えてたんでしょ。
感じなことを忘れていたというか、見落としてた。

389:132人目の素数さん
15/03/06 11:08:40.99 T1FPcLyt.net
>>279
>>363の[第7段]の「集合A」は「集合B」の間違い。

390:132人目の素数さん
15/03/06 11:10:20.90 AVlvxq7S.net
>>362
>f(g,e^{itπ})=(g,e^{itπ})→g・e^{itπ}∈T(t) が一意に定まる。
>ここで、-1<s<0<t<1であるから、複素平面Cの実軸に関する対称性から
>g・e^{itπ}=1。また、g=e^{isπ}だったから、g・e^{itπ}を計算すると
>g・e^{itπ}=e^{i(t+s)π}。従って、e^{i(t+s)π}=1であり、
ここが意味不明。
f(g,e^{itπ})=(g,e^{itπ})→g・e^{itπ}∈T(t) が一意に定まることと、
g・e^{itπ}=1 が成り立つこととは何の関係も無い。
Cの実軸に関する対称性が根拠になっているようだが、Cが実軸に関して対称だったからといって、
写像 f とは何の関係もない。f には、対称性に関する性質が何も設定されてないからだ。
>>363でも同様の論法を使っているので、そこもアウト。
どのみちダメじゃねーか。

391:132人目の素数さん
15/03/06 11:31:19.63 Z69jlrDR.net
アイヤー

392:132人目の素数さん
15/03/06 11:40:13.46 rYC8zJJ9.net
哀号
また駄目ニダか…

393:132人目の素数さん
15/03/06 14:44:24.43 T1FPcLyt.net
>>279
単純に行く。>>239-240は次のように訂正。
[第5段]:任意の2>s>1>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
確かに任意のθ∈R\Qに対して群T(θ)は定まる。
矛盾に導くため、或る2>s>1>t>0なるs、t∈R\Qが存在して、T(s)=T(t)であったとする。
すると、T(s)、T(t)は両方共に複素平面Cの単位円周上の部分集合だから、
2>s>1>t>0から、或る(m,n)∈(N\{0})^2が存在して、
e^{i(msπ)}=e^{i(ntπ)}であり、e^{i(msπ-ntπ)}=1。
よって、偏角の不定性に注意し両辺に主値を取ると、或るk∈Zが存在して、
i(msπ-ntπ)=2kπiから、ms-nt-2k=0。今2kをkで略記する。
すると、k∈Zであって、ms-nt-k=0…①が成り立つ。
ここで、n≠0だから①から、(m/n)s-t-(k/n)=0。
故に2つの無理数s、tの集合{s,t}


394:は有理数体Q上線型従属であり、t=(m/n)s-(k/n)。 T(s)=T(t)だから、T(t)=T((m/n)s-k/n)。 ここで、群T(s)は={e^{i(m_1・sπ)}∈C^{×}|m_1∈Z}と定義される。 また、群T(t)=T((m/n)s-(k/n))は、 ={e^{i(m_1・((m/n)s-(k/n))π)}∈C^{×}|m_1∈Z}と定義される。 e^{isπ}はm_1=1としたときのT(s)の点、 e^{i((m/n)s-k/n)π}はm_1=1としたときのT(t)の点であるから、 e^{isπ}=e^{i((m/n)s-(k/n))π}…② または e^{isπ}=e^{-i((m/n)s-(k/n))π}…③ のどちらか片方かつその一方に限り成り立つ。



395:132人目の素数さん
15/03/06 14:49:13.27 T1FPcLyt.net
>>279
(>>371の続き)
Case1):②が成り立つとき。②から、e^{i(((m/n)-1)s-k/n)π}=1…④。
ここで、s∈R\Qだったからsは無理数で、任意の有理数aに対して、
{a,s}は有理数体Q上線型独立である。よって、偏角の範囲を(-π,π]として
④の両辺に主値を取れば、i(((m/n)-1)s-(k/n))π=0であり、i≠0<πから
((m/n)-1)s-k/n=0、故に(m/n)-1=0から、m=n。
従って、群T(t)つまりT((m/n)s-(k/n))は、
T(t)={e^{i(m_1(s-(k/n))π)}∈C^{×}|m_1∈Z}と表わされる。
e^{isπ}はm_1=1としたときのT(s)の点、e^{i(s-(k/n))π}はm_1=1としたときのT(s)の点
だから、e^{i(sπ)}=e^{i(s-(k/n))π} または、e^{i(sπ)}=e^{-i(s-(k/n))π)}
のどちらか片方かつその一方に限り成り立つ。つまり、
e^{i(-k/n)π)}=1 または、e^{i(2s-k/n)π)}=1のどちらか片方かつその一方に限り成り立つ。
然るに、任意の有理数aに対して{a,s}はQ上線型独立だから、e^{iθπ}=1
を満たす実数θは有理数であることに注意すると、e^{i(2s-k/n)π)}≠1であって、
e^{i(-k/n)π)}=1となる。よって、偏角の不定性に注意して両辺に主値を取ると、
kに対して或るj∈Zが存在してk=2jπ。πは無理数、kは整数だから、
j=0からk=0。よって、①からms-nt=0、故にm=nからs=tが得られ、これはs>tに反し矛盾。
Case2):③が成り立つとき。③から、e^{i((1+(m/n))s+(k/n))π}=1。
然るにsは無理数だから、任意の有理数aに対して{a,s}は体Q上線型独立である。
よって、e^{iθπ}=1を満たす実数θは有理数であることに注意すると、e^{i(2s+k/n)π)}≠1であり矛盾。
Case1、2から、2>s>1>t>0なるs、t∈R\Qが存在して、T(s)=T(t)とすると、矛盾が生じる。

396:132人目の素数さん
15/03/06 14:51:42.40 T1FPcLyt.net
>>279
(>>372の続き)
[第6段]:任意の|s|>|t|かつ-1<s<0<t<1なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
θを実変数とするとe^{iθπ}はmod2の周期関数であるから、第5段の結果から従う。
[第7段]:任意の1>s>t>0なるs、t∈R\Qに対してT(s)≠T(t)であることを示す。
複素平面Cは実軸について対称であるから、第6段の結果から従う。
[第8段];乗法群C^{×}の正規部分群は非可算個存在することを示す。
開区間(0,1)は非可算であるから、乗法群C^{×}の正規部分群は非可算個存在する。

397:132人目の素数さん
15/03/06 18:30:30.86 AVlvxq7S.net
>>371-373
大間違い。今までのミスと全く同じミスを繰り返している。
>e^{isπ}はm_1=1としたときのT(s)の点、
>e^{i((m/n)s-k/n)π}はm_1=1としたときのT(t)の点であるから、
>e^{isπ}=e^{i((m/n)s-(k/n))π}…② または e^{isπ}=e^{-i((m/n)s-(k/n))π}…③
>のどちらか片方かつその一方に限り成り立つ。
大間違い。支離滅裂。m_1=1としたときの両者の点は
対応している必要が無いので、②とか③とかに限定できない。
このことは>>347でも指摘した。そのときと全く同じミスを繰り返している。
>Case1):②が成り立つとき。②から、e^{i(((m/n)-1)s-k/n)π}=1…④。
>ここで、s∈R\Qだったからsは無理数で、任意の有理数aに対して、
>{a,s}は有理数体Q上線型独立である。よって、偏角の範囲を(-π,π]として
>④の両辺に主値を取れば、i(((m/n)-1)s-(k/n))π=0であり、i≠0<πから
大間違い。偏角の範囲を(-π,π]に限定するなら、④の主値を取る前に、
(((m/n)-1)s-k/n)π が(-π,π]の範囲内に収まっていなければならない。
しかし、(((m/n)-1)s-k/n)π のままでは必ずしも範囲内に収まらないので、
一般的には>>357の後半で指摘したことと全く同じ状態になり、
結局は「 ある k∈Zに対して (m/n)-1)s-k/n=2k 」までしか言えない。
>e^{isπ}はm_1=1としたときのT(s)の点、e^{i(s-(k/n))π}はm_1=1としたときのT(s)の点
>だから、e^{i(sπ)}=e^{i(s-(k/n))π} または、e^{i(sπ)}=e^{-i(s-(k/n))π)}
>のどちらか片方かつその一方に限り成り立つ。つまり、
大間違い。支離滅裂。既に指摘したとおり、
m_1=1としたときの両者の点は対応している必要が無い。
このことは>>347でも指摘した。そのときと全く同じミスを繰り返している。

398:132人目の素数さん
15/03/06 18:47:06.11 AVlvxq7S.net
間違いはさらに続く。
>然るに、任意の有理数aに対して{a,s}はQ上線型独立だから、e^{iθπ}=1
>を満たす実数θは有理数であることに注意すると、e^{i(2s-k/n)π)}≠1であって、
ここの記述は間違っているわけではないが、θは有理数どころか
「偶数(負の偶数でもよい)」に限られるので、内容が冗長。
>e^{i(-k/n)π)}=1となる。よって、偏角の不定性に注意して両辺に主値を取ると、
>kに対して或るj∈Zが存在してk=2jπ。πは無理数、kは整数だから、
ここは完全に間違い。(-k/n) は「偶数(負の偶数でもよい)」となるので、
せいぜい (-k/n)=2j という程度の等式までしか言えない。
そもそも、(-k/n)は「πの係数」なんだから、その係数に対して k=2jπ などと
新しくπが出現するわけ無いだろ。おかしいと思わないのかよ。
いくら背理法を使っているからって、そんな支離滅裂な矛盾が出てきたら
自分の計算ミスを疑うのが普通だぞ。概念的に何も理解してない証拠じゃないか。

399:132人目の素数さん
15/03/06 19:14:54.25 AVlvxq7S.net
さらに言うと、[第5段]では「 s,t∈R-Q, T(s)=T(t), s>t 」という条件しか使っていない。
>すると、T(s)、T(t)は両方共に複素平面Cの単位円周上の部分集合だから、
>2>s>1>t>0から、或る(m,n)∈(N\{0})^2が存在して、
>e^{i(msπ)}=e^{i(ntπ)}であり、e^{i(msπ-ntπ)}=1。
この部分では、あたかも 2>s>1>t>0 を使っているかのように見えるが、
実際には「 s,t∈R-Q, T(s)=T(t) 」さえ成り立っていれば十分であり、それだけで
「 ある(m,n)∈(Z\{0})^2 に対して e^{i(msπ)}=e^{i(ntπ)} 」が言えてしまう。
従って、この部分では せいぜい「 s,t∈R-Q, T(s)=T(t) 」しか使っていない。
そして、その後の議論で新しく使っている性質は s>t だけなので、結局、
[第5段]全体を通しては「 s,t∈R-Q, T(s)=T(t), s>t 」しか使っていない。
となれば、「 s,t∈R-Q, T(s)=T(t), s>t ならば矛盾 」が言えたことになってしまい、
すなわち「 s,t∈R-Q, s>t ならば T(s)≠T(t) 」が言えたことになってしまうが、
これには反例があるのだった(s=√2+2, t=√2 など)。というわけで、この考察だけでも、
「 [第5段]の証明はどこかが間違っている」ということが分かってしまう。
証明中に安易に「 2>s>1>t>0


400:」という呪文を書き込んだだけでは、 その条件を使ったことにはならないのだ。その後の議論が、その条件を 使わなくても成り立つものであるならば、実際には その条件は使われていないのだ。



401:132人目の素数さん
15/03/07 08:11:04.98 /NeL5nxq.net
>>376
>その後の議論が、その条件を
>使わなくても成り立つものであるならば、実際には その条件は使われていないのだ。
これははじめて知った。場合分けが生じる背理法の議論の真偽の見分け方について、参考になった。
というか、今まで条件を使わなくても矛盾が生じれば正しい議論になる
とばかり思っていた。一体、何にそういうことが書いてあるんだ?

402:132人目の素数さん
15/03/07 08:16:58.05 /NeL5nxq.net
>>359
>>360
>(例えば、>>353のCase1-1の考え方は、m、n∈Z\{0}がm^2≡0 (mod n)を満たすとき
>nに対して或るk∈N\{0}が存在してn=±k^2となることの証明に使える)。
の部分は条件が必要にで、この部分は取り下げ。

403:現代数学の系譜11 ガロア理論を読む
15/03/07 14:08:42.74 CATUi/5b.net
age

404:現代数学の系譜11 ガロア理論を読む
15/03/07 14:11:50.75 CATUi/5b.net
どうも。スレ主です。
>>333から>>397まで、その間はご無沙汰です

405:現代数学の系譜11 ガロア理論を読む
15/03/07 14:16:22.41 CATUi/5b.net
なんか、規制に引っかかって、書けなくなりました
そこで、「2ちゃんねるプレミアム Ronin」を購入して、Jane Styleを復活させました
コテ”現代数学の系譜11 ガロア理論を読む”も復活です。はい

406:132人目の素数さん
15/03/07 14:21:18.78 /NeL5nxq.net
>>376
1つ聞きたいことがある。
私は、或る条件をみたすような任意の有理数が超越数になる
という奇妙な現象を発見している(詳細は書かない)。
本来は、或る条件を満たすような任意の実数について成り立つ命題である。
単純に反例を挙げるだけでは済まなくなると思うが、この真偽については如何?
>>359
>>378の最後の行の「必要にで、」は「必要で、」の間違い。

407:現代数学の系譜11 ガロア理論を読む
15/03/07 14:22:22.17 CATUi/5b.net
ID:/NeL5nxqさんは、”おっちゃん”だと思うけど
”おっちゃん”らしいね
まあ、頑張って下さい
ID:AVlvxq7Sさんは、いつもの方と思いますが
まあ、お呼びするとしたら、”導師”か”メンター”か
私より、だいぶレベルが上ですね
辛抱強く、”おっちゃん”のご指導で、頭が下がりますね
私ら、”おっちゃん”のカキコを読む気がしない・・

408:132人目の素数さん
15/03/07 14:27:48.03 /NeL5nxq.net
スレ主よ。
私の証明に対し反例を挙げて間違いを指摘している人間をどう思う?
意見を聞きたい。

409:現代数学の系譜11 ガロア理論を読む
15/03/07 14:29:19.89 CATUi/5b.net
>>382
”おっちゃん”、どうも。スレ主です。
連投規制になるかなと思ったが、おかげでクリアーできそうだ
>私は、或る条件をみたすような任意の有理数が超越数になる
>という奇妙な現象を発見している(詳細は書かない)。
なるほど、私に聞いているのではないと思うが
y=f(x) で、xが任意の有理数、yが超越数になると
そういう関数fのことかな?

410:現代数学の系譜11 ガロア理論を読む
15/03/07 14:31:23.87 CATUi/5b.net
>>384
”おっちゃん”の方が正しいと
心情的には言いたいが
私の数学的直感は逆だね
証明を細かく読んでないが

411:132人目の素数さん
15/03/07 14:34:17.52 /NeL5nxq.net
>>385
>なるほど、私に聞いているのではないと思うが
>y=f(x) で、xが任意の有理数、yが超越数になると
>そういう関数fのことかな?
数論の或る病的な現象になっているんだよ。
本当に数論は正しいのだろうか? と思っているんだよ。

412:132人目の素数さん
15/03/07 14:37:39.85 /NeL5nxq.net
>>386
まあ、そのあたりはどうでもいいけどね。

413:現代数学の系譜11 ガロア理論を読む
15/03/07 14:46:25.91 CATUi/5b.net
>>334-338
どうも。スレ主です。
まあ、口だけ達者だな
ID:/CImvwKh、D:d/R6BEmu、ID:W+oQWcvbくんたちか
1.「R の Q 上の基底はハメル基底と呼ばれ、非可算無限の濃度を持つ。スレ主はその理由はわかってるの? 」:はい、分かりません
2.圏論は、最初から徹底コピペです�



次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch