現代数学の系譜11 ガロア理論を読む12at MATH
現代数学の系譜11 ガロア理論を読む12 - 暇つぶし2ch150:アーベルの虚数乗法が最も適当であろう」「虚数乗法が大物であることは歴史が明らかに示している」と書かれている ”大物”というのは、その後笠原乾吉にあるように、Kronecker、Weierstrass, その後の”4.Kleinのモジュラー方程式”で有名なDedekindのJ(τ)の研究に繋がってきたからかな(以上は笠原より) 高木にガウスのmodular function が出てくる http://ja.wikipedia.org/wiki/%E3%83%A2%E3%82%B8%E3%83%A5%E3%83%A9%E3%83%BC%E5%BD%A2%E5%BC%8F (文字化けは修正しないので原文を見て下さい) http://en.wikipedia.org/wiki/Modular_form モジュラー函数はウェイト 0 のモジュラー形式である。これはつまりモジュラー群の作用に関して(所定の変形を受ける代わりに)「不変」であることを意味する。 楕円曲線上の函数としての扱い C における任意の格子 Λ は C 上の楕円曲線 C/Λ を決定する。ふたつの格子が同型な楕円曲線を定めるのは、一方にある定数 α を掛けたものが他方に含まれるとき、かつそのときに限る。 モジュラー函数は複素楕円曲線の同型類の成すモジュライ空間上の函数と考えることができる。 たとえば、楕円曲線の j-不変量は楕円曲線全体の成す集合上の函数とみなせばモジュラーである。モジュラー形式もまたこのように楕円曲線のモジュライ空間上の直線束の切断という幾何学的な方向で攻めるのが有効である。 モジュラー形式 F を複素一変数の函数に変換するのは簡単で、z = x + iy で y > 0 かつ f(z) = F(〈1, z〉) とすればよい(y = 0 とすると 1 と z が格子を生成できないので、y が正である場合にのみに限って考える)。 前節の条件 2 はここでは、整数 a, b, c, d で ad - bc = 1 を満たすものに対する函数等式(略)となる。 Milne, James (2010), Modular Functions and Modular Forms, Theorem 6.1. http://www.jmilne.org/math/CourseNotes/MF.pdf これ比較的新しい




次ページ
続きを表示
1を表示
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch