24/02/24 16:31:04.39 8e2wHLHp.net
[第1段]:2^{√2} が代数的数であるとする
a=2^{√2} とおく
仮定から、aは実数であって、aは実数の代数的数である
a=2^{√2} とおいているから log_|a|=√2×log|2| である
よって a=2^{√2} から 2^{√2}=e^{√2×log|2|} が成り立つ
[第2段]:ところで、1<√2<3/2 だから 2^{√2}<2^{3/2} である
また e>2 から log|2|<1 であって、4/3<√2<3/2 だから
log|2|<4/3<√2×log|2|<3/2×log|2| から e^{√2×log|2|}>e^{4/3} である
よって、2^{√2}>e^{4/3} を得る
[第3段]:故に、log_2|e^{4/3}|<√2 から log_2|e|<3/4×√2 であって、
e<2^{3/4×√2} から 1<3/4×√2×log|2|、即ち e^{(2√2)/3}<2 である
よって、e<3 から 3^{(2√2)/3}<2 であって、3^{2√2}<8 を得る
[第4段]:しかし、3^{2√2}>3^2=9 だから、3^{2√2}<8 が得られたことは
3^{2√2}>8 なることに反し、矛盾する
この矛盾は 2^{√2} が超越数ではないとしたことから生じたから、
背理法により 2^{√2} は超越数である
eの近似値や 2<e<3 などの大小関係は高校数学の範囲の筈だから、
超越数の定義が分かっていれば 2^{√2} の超越性も
高校数学の範囲で示せる気がしないでもないんだが…