18/02/19 23:19:35.50 m16ZPD9z.net
>>301-302
まず証明したいことはこれ
|(1+1/n)^nはnを増すにしたがって大きくなる
これは、任意のn>2について
{1+1/(n-1)}^(n-1)<(1+1/n)^n←②
であることを言いたい。そのために
{1+1/(n-1)}^(n-1)-(1+1/n)^n<0←②'を証明する
②'の左辺
={1+1/(n-1)}^(n-1)-{1+1/(n-1)}^n+{1+1/(n-1)}^n-(1+1/n)^n
=(1-{1+1/(n-1)}){1+1/(n-1)}^(n-1)+{1+1/(n-1)}^n-(1+1/n)^n
={-1/(n-1)}{1+1/(n-1)}^(n-1)+[{1+1/(n-1)}^n-(1+1/n)^n]
第2項がy^n-a^nの形になったので、
y>aならばy^n-a^n<n(y-a)y^(n-1) に
y=1+1/(n-1) a=1+1/n ←① を代入した以下の式を使います。
{1+1/(n-1)}^n-(1+1/n)^n<n{(1+1/(n-1))-(1+1/n)}{1+1/(n-1)}^(n-1)
つまり[{1+1/(n-1)}^n-(1+1/n)^n]<{1/(n-1)}{1+1/(n-1)}^(n-1)
この不等式の両辺に{-1/(n-1)}{1+1/(n-1)}^(n-1)を加えると
②'の左辺<{-1/(n-1)}{1+1/(n-1)}^(n-1)+{1/(n-1)}{1+1/(n-1)}^(n-1)=0
これで②が証明できました