10/12/22 16:47:09 .net
>>324の続き:
よって一般解は
A^nB^n(c,d)、自然数nは任意、B(c,-d)=(1,0)、(c,-d)
つまり
B^n(c,d)、自然数nは任意、B(c,-d)=(1,0)、(c,-d)
と表わされて、正方行列について、
任意の自然数nに対してA^nB^n=B^nが成り立つ。
このとき、Bは正則行列だから、A^n=Iとなる。
同じくAも正則だから、Aは一般線型群GL(2,R)に属し、A^n∊GL(2,R)、nは任意。
従ってA=Iであって、一般解が(a,b)に限られて有限個存在することになり矛盾。
あとの細かいギャップ埋めは紙の上でして下さい。