代数学・幾何学・解析学スレッドat MATH
代数学・幾何学・解析学スレッド - 暇つぶし2ch326:132人目の素数さん
10/12/22 03:27:42 .net
>>317
>Pell方程式を満たす全ての整数解が他に存在しないこと
は次のようにして示せる。

1つ解(a,±b)を固定して定まる一般解
A^n(a,b)、自然数nは任意、A(a,-b)=(1,0)、(a,-b)
の他に解(c,±d)が存在したとする。
すると解(c,±d)に対して或る正方行列Bが存在して一般解
B^n(c,d)、自然数nは任意、B(c,-d)=(1,0)、(c,-d)
が構成される。このとき、(a,b)に対して或る自然数mが存在して
(a,b)=B^m(c,d)が成り立つ。よって一般解は
A^nB^m(c,d)、自然数nは任意、B(c,-d)=(1,0)、(c,-d)
と表わされて、正方行列について、
任意の自然数nに対してA^nB^m=B^nが成り立つ。
つまり、n=mとすればA^mB^m=B^mであって、
Bは正則行列だから、A^m=Iとなる。
同じくAも正則だから、Aは一般線型群GL(2,R)に属し、A^m∊GL(2,R)。
従ってA=Iであって、B^m=I∊GL(2,R)から
(a,b)=B^m(c,d)=(c,d)が得られて矛盾。


次ページ
最新レス表示
レスジャンプ
類似スレ一覧
スレッドの検索
話題のニュース
おまかせリスト
オプション
しおりを挟む
スレッドに書込
スレッドの一覧
暇つぶし2ch